
{�JFITPED

Javascript fundamentals

www.fitped.eu

Co-funded by the
-Erasmus+ Programme

of the European Union

Jan Skalka

Jozef Kapusta

L'.ubomfr Benko

Arkadiusz Nowakowski

Zenon Jose Hernandez-Figueroa

Jose Daniel Gonzalez-Domfnguez

Juan Carlos Rodrfguez-del-Pino

Jan Francisti

Tomas Hala

Work-Based Learning in Future

IT Professionals Education

[

(Grant. no. 2018-l-SK01-KA203-046382)

2021]

JavaScript Fundamentals

Published on

November 2021

Authors

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Jozef Kapusta | Pedagogical University of Cracow, Poland

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Arkadiusz Nowakowski | University of Silesia in Katowice, Poland

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Jan Francisti | Constantine the Philosopher University in Nitra, Slovakia

Tomáš Hála | Mendel University in Brno, Czech Republic

Reviewers

Martin Drlík | Constantine the Philosopher University in Nitra, Slovakia

Cyril Klimeš | Mendel University in Brno, Czech Republic

Piet Kommers | Helix5, Netherland

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Peter Švec | Teacher.sk, Slovakia

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1788-0

Table of Contents

1 Introduction to JavaScript .. 5

1.1 Linking to a JavaScript ... 6

1.2 Outputs and comments ... 9

2 Variables ... 14

2.1 Variables .. 15

2.2 Numeric variables ... 20

2.3 Data types.. 23

3 If Statement .. 28

3.1 If statement I. .. 29

3.2 If statement II. ... 34

4 Loops .. 39

4.1 For loops .. 40

4.2 While and do-while loops ... 44

4.3 Loops (programs) ... 48

5 String ... 51

5.1 String type ... 52

5.2 Substring ... 55

5.3 String (programs) ... 59

6 Arrays .. 62

6.1 Arrays ... 63

6.2 Arrays processing ... 66

6.3 Arrays (programs) .. 69

7 Functions .. 72

7.1 Functions ... 73

7.2 Function parameters .. 76

8 Document Object Model (DOM) ... 80

8.1 Introduction to DOM ... 81

8.2 Document properties .. 89

8.3 Accessing elements ... 97

8.4 Substitution and elimination of elements ... 104

9 Manipulation with Elements ... 107

9.1 Changing element style .. 108

9.2 innerHTML ... 113

10 Event-driven Programming ... 116

10.1 Event-driven programming .. 117

10.2 More event types .. 120

10.3 Event handlers .. 123

Introduction to JavaScript

Chapter 1

Introduction to JavaScript | FITPED

6

1.1 Linking to a JavaScript

🕮 1.1.1

JavaScript is known as the language of modern web browsers. JavaScript is a
flexible, and fast programming language which is used for web development.

Since JavaScript remains at the core of web development, it is often the first
language learned by self-taught coders eager to learn and build.

Be careful, JavaScript and Java are completely different languages, both in concept
and design. JavaScript was invented by Brendan Eich in 1995.

📝 1.1.2

JavaScript and Java are the same languages, JavaScript is a part of the language
Java containing functions aimed at web development.

• False
• True

🕮 1.1.3

JavaScript is the default scripting language in HTML.

What you can do with JavaScript:

• Add and remove content from the web page.
• Access and change element attributes, including source and class.
• Insert markup into a web page using function innerHTML.
• Change style attribute.

🕮 1.1.4

The primary importance of JavaScript is in the area of website creation. JavaScript
is inserted into the HTML of the web page. There are two approaches to adding
JavaScript to HTML

• Create a JavaScript source code in a separate file and then create in the
HTML code a link to JavaScript.

• Create an area in the HMTL code for a JavaScript embedding

Introduction to JavaScript | FITPED

7

🕮 1.1.5

For inserting JavaScript code into HTML, JavaScript code is inserted into
element <script> between <script> and </script>.

It is able to insert scripts into elements <head> or <body>.

Both options have their own advantages:

Most of the external scripts which are inserted into web pages, for example,
Bootstrap, JQuery and others are inserted into element <head>. In the case of
inserting custom scripts into <head>, we can have an overview of all scripts in one
element.

Nowadays is common to use the inserting of code JavaScipt at the
end. <body>. The reason is the effort for faster loading of web pages. Since the
compilation of scripts slows down the showing of pages, it is better to load the
content of pages for users and subsequently load scripts.

📝 1.1.6

Which HTML element can contain a program from JavaScript?

• <|javascript>
• <|img>
• <|code>
• <|script>
• <|p>

📝 1.1.7

In HTML code insert tags into element <body> for a Javascript code.

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 //JavaScript code

 </body>

Introduction to JavaScript | FITPED

8

</html>

🕮 1.1.8

The next option for writing JavaScript code is in a separate file (saved with suffix
.js), then to create a link in an HTML code for the file and open it with a browser.
The placement of scripts into external files logically divides HTML code from
JavaScript and simplifies reading and additional editing of the script.

Alike as inserting Javascript into pages, in case of external file we can insert
element <script> into element <head> or <body>. An important attribute is src, in
which we specify where the file is saved and how it is named.

For example:

<script src="my_script.js"></script>

If the file with JavaScript is available on a web address, it is possible to load a file
from the web by stating a correct URL address into attribute src, for example:

<script src="https://www.my_page.com/js/my.js"></script>

📝 1.1.9

Which parameter is used for inserting Javascript link in an element <script>?

• src
• link
• script
• js
• href

📝 1.1.10

In HTML code insert a link into element <body> on Javascript stored in a file test.js

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script src="_____"></script>

Introduction to JavaScript | FITPED

9

 </body>

</html>

📝 1.1.11

In HTML code insert a link into element <body> on Javascript stored in a url
address http://www.mypage.eu/js/test.js

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script _____="http://www.mypage.eu/js/test.js"></script>

 </body>

</html>

1.2 Outputs and comments

🕮 1.2.1

The first step with the coding language JavaScript is to add comments. Comments
are commonly used by programmers, being part of the code, even though the
computer (JavaScript interpreter) ignores them. Their purpose is to save comments
and notes for programmers.

By using comments, the code is more efficient, when you return to rewrite it.
Programming is in larger projects a cooperative activity, and that is the reason why
commenting in source codes is compulsory for larger teams.

A comment can explain ideas of program creator, backup instructions for other
developers inside of the code or add other important notes.

🕮 1.2.2

There are two types of JavaScipt comments:

1. A one-lined code. It is designated with characters //, behind which is the
comment text, for example:

// my comment starting at the beginning of the line

Introduction to JavaScript | FITPED

10

The end of the one-lined comment isn't designated, the end of the line is meant to
be the end

function my_f(input) // my second comment

2. A multiline comment. It usually includes large pieces of the text, probably for
multiple lines. This type of comment is inserted between characters /* and */.

Example:

/*

This whole text

will be

understood by the computer as a comment

*/

We can even use this type of commenting inside the line of the code, for example:

function my_f(/* can be even zero*/ input) //my own function

📝 1.2.3

Insert into Javascript code one-liner code comment with a text: I am excited about
Javascript.

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 _____ I am excited about Javascript

 </script>

 </body>

</html>

📝 1.2.4

Insert into Javascript code a multiline comment of 3 lines beginning with "Lecture
1" and ending with "I am excited, what is next."

Introduction to JavaScript | FITPED

11

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 Lecture 1:

 Comments

 I am excited, what is next.

 </script>

 </body>

</html>

📝 1.2.5

Insert correct tags for comment into Javascript code:

1. Mark the text beginning with „If you were“ and ending with “Then they would
exclaim:” into a multiline comment.

2. Insert the sentence „Oh, what a pretty house that is!” into a one-liner
comment.

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 If you were to say to the grown-ups:

 "I saw a beautiful house made of rosy brick, with

geraniums in the windows and doves on the roof," they would

not be able to get any idea of that house at all.

 You would have to say to them:

 "I saw a house that cost $20,000."

 Then they would exclaim:

Introduction to JavaScript | FITPED

12

 _____ "Oh, what a pretty house that is!"

 </script>

 </body>

</html>

🕮 1.2.6

The first function we will use is alert(). The function shows alerts with a message
(text) and a button OK. It is often used as a warning message for the user of a web
application.

It isn't recommended to use the function too often, as it prevents the user access to
some parts of the web page, while the window with a message will not be closed.

In our course, we will use the function only for controlling the correctness of our
code. Therefore most of our scripts will be ended with a function alert() for final
results output.

The important part of a function alert() is a parameter of a function. It is used to
address an input value into a function. Input parameter will be a text which we will
use in a shown window to the user, for example:

alert("Hello world!");

Similar to other coding languages, even in JavaScript it is important to end the line
or a function (at the end of the line) by inserting a semicolon ; (or line feed). It
separates individual commands from each other.

Theoretically, we could write the whole Javascript code into a one-liner. Semicolons
are important for the interpreter to identify the end of the command. The division of
the code into single lines is only for transparency and the readability of the source
code.

📝 1.2.7

The majority of messages are text. If we want to work with a text in JavaScript (we
will also use numbers), it is important to insert the text into quotes.

Sometimes apostrophes are used, their purpose will be mentioned later.

Insert the function alert into JavaScript code and show a message "First message
from programmer!" to the user. Don`t forget the semicolon at the end of the line!

Introduction to JavaScript | FITPED

13

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 _____("First message from programmer!")_____

 </script>

 </body>

</html>

📝 1.2.8

Insert functions for showing two messages into a JavaScipt code. The first
message will include the text "Welcome to my web page" and the second one "Feel
free to look around".

Don`t forget semicolons at the end of the line!

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 _____("Welcome to my web page")_____

 _____("Feel free to look around")_____

 </script>

 </body>

</html>

Variables

Chapter 2

Variables | FITPED

15

2.1 Variables

🕮 2.1.1

Variables are used for saving the information we need. They allow us to manipulate
data and use it to get desired results. The simplest is to imagine them as areas
within the memory of the computer; each area is a variable that holds information.
This data can be moved, copied or even changed during the run time of your
program.

It is easier to consider variables as containers that can store any information we
want. The data can be used later on in your program.

Declaring and initializing variables in the JavaScript language:

var x = "the first word";

Explaining individual parts:

• var is the keyword for initializing a variable. It lets the browser (and the rest
of the code) know of its existence, name and any value we assign to it.
Creating a variable is called declaration and giving it value is called
initialization.

• x is the name of the variable,
• = is an assignment operator. As the name suggests, it assigns a value to a

variable
• “the first word“ the value stored in our variable.

The variables with text should be put in quotation marks (apostrophes can be used
in some cases).

📝 2.1.2

Create a variable car in code and assign a value "MPV".

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <_____>

 _____ _____="MPV";

 <_____>

 </body>

Variables | FITPED

16

</html>

• code
• variable
• car
• script
• /code
• /script
• var

📝 2.1.3

The advantage of variables is in case of the need we can edit its value. For a
repeatable use of variables, we don`t use keywords var. We can view a value of the
variable for the user with a function alert(), in which the parameter sets the name of
the variable.

Assign into a variable car new value "SUV".

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var car = "MPV";

 _____ = "_____";

 alert(car);

 </script>

 </body>

</html>

🕮 2.1.4

We can set a value of a variable into another variable. Example:

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

Variables | FITPED

17

 <script>

 var car = "Cabrio";

 var my_car = car;

 alert(my_car);

 </script>

 </body>

</html>

🕮 2.1.5

Linking variables with a text context are realized with the operator +. In the next
example, we will see the linking of three input variables with the text context into
one output variable which we will be shown to the user with a function alert().

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var part1 = "Good";

 var part2 = " ";

 var part3 = "morning";

 var together = part1 + part2 + part3;

 alert(together);

 </script>

 </body>

 </html>

📝 2.1.6

Which operator is used for linking text strings?

• + (plus)
• . (dot)
• , (comma)
• - (dash)

Variables | FITPED

18

📝 2.1.7

From the variables x, y and z we can create the sentence "I can't wait what's next".
Save the sentence into a variable result which will be shown to the user by a
function alert().

It is also needed to realize that we don't need to insert the text with the space, as
the text begins with the space in the variable y and z.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var x = "I can't";

 var y = " wait what's";

 var z = " next";

 var result = "";

 result = _____ + _____ + _____;

 _____(_____)_____

 </script>

 </body>

</html>

• y
• warning
• x
• alert
• concate(x,y,z)
• print
• result
• x.y.z
• ;
• z

📝 2.1.8

What will be shown in a window by the function alert()?

<!doctype html>

<html>

 <head>

Variables | FITPED

19

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var planet1 = "Mercury";

 var planet2 = "Venus";

 var planet3 = "Earth";

 var planet4 = "Mars";

 alert(planet3);

 </script>

 </body>

</html>

• Earth
• Mercury
• Venus
• Mars

📝 2.1.9

What will be the output when using the function alert() in the next code?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var planet1 = "Mercury";

 var planet2 = "Venus";

 planet1 = "Earth";

 planet2 = "Mars";

 alert(planet1);

 </script>

 </body>

</html>

• Earth
• Mercury
• Venus
• Mars

Variables | FITPED

20

📝 2.1.10

What will be the output of the code using the function alert()?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var planet1 = "Mercury";

 // planet1 = "Venus";

 planet1 = "Earth";

 /*

 planet1 = "Mars";

 planet1 = "Jupyter";

 */

 alert(planet1);

 </script>

 </body>

</html>

• Earth
• Mercury
• Venus
• Mars

2.2 Numeric variables

🕮 2.2.1

The programming language is not limited to writing simple texts, it can also make
calculations. We use numeric variables for this purpose.

var a = 10;

var b = 20;

var sum = a + b; // 30

So the result of a + b, which is actually 10 + 20, is assigned into the variable sum.
First, the entire calculation is performed at the right side of the "=" and the result is
assigned to the variable after its completion.

• addition (+)

Variables | FITPED

21

• subtraction (-)
• multiplication (*)
• division (/)

If more than one operation is used in the calculation (commonly referred to as the
expression), the standard policy applies: multiplication and division take
precedence over addition and subtraction. If they are in brackets, the expression in
them is evaluated first. If they have the same priority, the calculations are
performed from left to right.

📝 2.2.2

What is the output of this part of the program:

var a = 10;

var b = 20;

var sum = 2 * a + b;

alert(sum);

🕮 2.2.3

Just as we could calculate the value with the output, we can do it with variables:

var a = 10;

var b = 5;

alert(a * b); // 50

In the output, the calculation is performed first - instead of the variables, the values
they contain are put in - and the result obtained is written.

📝 2.2.4

What is the output of this part of the program:

var a = 15;

var b = 20;

alert(a + b - 2 * (a - b));

Variables | FITPED

22

🕮 2.2.5

The variable may have potentially any name, but we have to follow the following
rules:

• the name of the variable must begin with a letter, or "_" (or $, but it is not
used)

• other characters may be letters, numbers, or underscores
• names are case sensitive
• the name of the variable must not be either commands or keywords of the

language

📝 2.2.6

Which of the following can be used as the variable name:

• my_var
• _cool
• cat
• d_og
• var
• woof-woof
• c 12 3

🕮 2.2.7

Numbers offer a special operation that returns the remainder after division. For its
calculation is used the operator %.

E.g.:

• 10 % 3 = 1
• 10 % 2 = 0
• 15 % 7 = 1
• 20 % 7 = 6
• 10 % 0 – division by zero = error

📝 2.2.8

What is the output of the following code?

var a = 27;

Variables | FITPED

23

var b = 4;

var c = a % b;

alert(c);

🕮 2.2.9

Change of the value of a variable by 1 is done using the incremental and
decremental operator that replaces the "long" notation that serves to increase or
decrease the value of the variable by 1.

Instead of long notation:

a = a + 1;

we can use the incremental operator ++:

a++;

Instead of long notation:

b = b - 1;

we can use the decremental operator --:

b--;

📝 2.2.10

What is saved in the variable a after the execution of the following commands?

var a = 12;

a++;

a = a – 3;

a++;

a--;

2.3 Data types

🕮 2.3.1

We used data types number and string. Every type has different behaviour.

For:

Variables | FITPED

24

var a = "word1"

var b = "word2"

is the result of expression a + b concatenation of string: word1word2.

For:

var a = 30

var b = 20

is the result of expression a + b sum of numbers: 50.

If we use a combination of these types and add a number and a string, JavaScript
will treat the number as a string.

For:

var a = 30

var b = "years"

is the result of expression a + b sum of numbers: 30years.

📝 2.3.2

What is saved in the variable c at the end of the program?

var a = 3

var b = "winter"

var c = b + " " + a + " degrees"

🕮 2.3.3

The combination of various types of variables brings various behaviour of
operations. The operation is executed as a numeric operation if both values are of
number type. If one of the values is textual type second value is converted to a
string and the operation is executed with string values.

E.g.

var a = 10;

var b = 15;

var c = "my result: ";

alert(c + a + b); // my result: 1015

alert(c + (a + b)); // my result: 25

Variables | FITPED

25

In a second case is preferred operation a + b where both values are numeric and
the "+" is used as numeric addition.

📝 2.3.4

What is saved in the variable d at the end of the program?

var a = 3

var b = 7

var c = "value: "

var d = c + (a + b)

🕮 2.3.5

The type of variable can be changed. It depends on the value that is assigned to the
variable, e.g.:

var a; // a is undefined

a = 100; // a is a Number

a = "Anna"; // a is a String

The information about the current variable type is available using typeof:

var a = 10;

alert(typeof(a)); // number

var b = "hello";

alert(typeof(b)); // string

var c;

alert(typeof(c)); // undefined

📝 2.3.6

Pair variables and types of their content.

var a = "" + 10; alert(typeof(a)); // _____

var b = 20 + 40.3; alert(typeof(b)); // _____

var c = 17; alert(typeof(c)); // _____

var d = ""; alert(typeof(d)); // _____

var e; alert(typeof(e)); // _____

• number
• number

Variables | FITPED

26

• string
• number
• undefined
• number
• undefined
• string
• undefined

🕮 2.3.7

We are working often also with logic values that can have the value true or false.
Data type boolean is used to save this kind of value.

Often it is the result of comparison or evaluation of a condition.

E.g.:

var a = 10;

var b = 15;

var c = a > b; // false

c = a < b; // true

If we want to check if the values are identical we can use the operator "==".

var a = "winter";

var b = "winter";

var c = (a == b); // true

If we want to find out if the values are not identical we can use the operator "!=".

var a = "winter";

var b = "winter";

var c = (a != b); // false

📝 2.3.8

Pair variables and their value.

var a = 10;

var b = 15;

var c = 20;

var d = "Paris";

var e = "London";

var f = "London";

Variables | FITPED

27

var r1 = (a > b); // _____

var r2 = (a < b); // _____

var r3 = (a == b); // _____

var r4 = ((a + b) == c); // _____

var r5 = (e == f); // _____

var r6 = (a != b); // _____

var r7 = (d == f); // _____

• true
• true
• false
• false
• false
• false
• false
• false
• true
• true
• true
• false
• true
• true

If Statement

Chapter 3

If Statement | FITPED

29

3.1 If statement I.

🕮 3.1.1

Like other programming languages, JavaScript can use a non-sequential command
sequence. When executing a program, it is often necessary to decide which
commands the program has to run. The decision is made based on the result of the
condition.

The ability to decide and execute other commands based on executing or not
executing conditions is referred to as branching. It consists of a condition and
commands to be running in the event of execution or not execution of the condition

For example, The program will detect the age of the user. If the user is less than 25
years old, it will say "Hello", if the user is more than 25, it will say "Good
morning/afternoon". The condition will be to determine if the user is under 25. The
condition must always be evaluable, i.e. we can always determine whether or not it
is valid.

In JavaScript, branching is done using the if statement. We use this command to
determine a part of the code that is executed when the condition is valid. The
command looks like this:

if (condition) {

 // part of the code, i.e. a command or group of commands to

execute when a condition is valid

 }

When using the if statement, the following must be observed:

• The condition is always written in brackets - ().
• The part of the code to be executed is enclosed in brackets - {}.

📝 3.1.2

Fill in the missing parts of the code:

if _____condition_____ _____

 // commands

•)
• {

If Statement | FITPED

30

• (
• }

🕮 3.1.3

The conditions use comparison operators for comparing values and/or variables:

• > - is bigger, e.g. a > b
• >= - is bigger or equal, e.g. a >= b
• < - is less, e.g. a < b
• <= - is less or equal, e.g. a <= b
• == - is equal, e.g. a == b
• != - is not equal, e.g. a != b

Using symbols in the wrong order will cause an error (e.g.: =>, or <>).

📝 3.1.4

Choose the correct comparison operators:

• ==
• <|=
• >=
• !=
• <|
• >
• =
• =>
• =<|
• !

📝 3.1.5

Enter the correct characters for comparison in the code:

input = -5;

if (a _____ 0){

 alert("zero value");

}

if (a _____ 0) {

If Statement | FITPED

31

 alert("the number is greater than or equal to zero");

}

if (a _____ 0) {

 alert("the number is negative");

}

🕮 3.1.6

The first example of the program is about identification, whether the user with the
input age is a child.

var age = 16;

if (age < 18) {

 alert("This is a child");

}

The program writes the information if the value of the variable age is less than 18,
but in the opposite case, i.e. if the value of age is 18 or older, we will not receive any
information.

To handle the situation, i.e. to specify the commands to be executed when the
condition does not apply, is used else statement. This specifies one or a group of
commands to be executed if the condition is not valid.

The general registration shall take the form of:

if (condition) {

 // commands when the condition is valid;

} else {

 // commands when the condition is NOT valid;

}

Our initial program would have the form of:

var age = 16;

if (age < 18) {

 alert("This is a child");

} else {

 alert("This is an adult");

}

If Statement | FITPED

32

📝 3.1.7

What pair of commands is used to execute so-called full branching?

• if – else
• if – then
• then – else
• condition – then

📝 3.1.8

Complete the program, which executes the number in the variable a whether it is a
positive or non-positive number:

var a = -5;

if _____a > __________ {

 alert("positive");

 } _____ _____

 alert("non-positive");

}

• >
• 1
• }
•)
• else
• <|
• (
• 0
• {
• {

🕮 3.1.9

The command groups that are executed when a condition is valid or not are called
branches.

The positive branch is represented by the commands in the section that is executed
when the condition is valid. The negative branch consists of the commands located
in the branch after the else command.

In the following program, we will ensure that if the wage is lower than the average,
its value increases by 100 and we report the increase.

If Statement | FITPED

33

var average = 1010;

var wage = 950;

if (wage < average) {

 wage = wage + 100;

 alert("The wage was increased");

}

alert("Your wage this month: " + wage);

📝 3.1.10

Complete the program that will write the absolute value of the number in the
variable input. Fill in to indicate whether the input was a positive or negative
number.

var input = -5;

if (_____ < _____){

 alert("_____");

 input = -input;

} _____ {

 alert("_____");

}

alert("absolute value: " + _____);

• positive
• -input
• 1
• input
• esle
• input
• input
• else
• 0
• negative

📝 3.1.11

Complete a program that greets the user according to his/her age. If the user is
less than 25 years old, he will say hello, if more, he will say Good
morning/afternoon.

_____ age = 19;

if(age _____ 25){

If Statement | FITPED

34

 alert("Hello");

} _____ {

 alert("Good morning/afternoon");

}

📝 3.1.12

What is the value is written by command alert() after execution of commands:

var a = 10;

if (a < 0){

 a = a + 1;

} else {

 a = a - 1;

}

alert(a);

• 9
• 10
• 11
• 0

3.2 If statement II.

🕮 3.2.1

In the previous examples, we always put each branch in brackets {}. If there is only
one command in the branch, parentheses may not be used. However, this is not the
case in real programs.

The following entry can be used for one command per branch:

var age = 19;

if (age < 25)

 alert("Hi");

else

 alert("Hello");

This is identical to the following code:

var age = 19;

if (age < 25) {

 alert("Hi");

If Statement | FITPED

35

} else {

 alert("Hello");

}

📝 3.2.2

Fill the gaps in the program to compare two numbers and show the larger one.

_____ a = 10;

_____ b = 15;

if _____a > b_____

 _____(a);

else

 _____(b);

• int
• print
• }
• alert
• else
• alert
• var
• (
•)
• int
• print
• var
• {

🕮 3.2.3

The result of the comparison can be used also in conditions so that we will get the
result of the expression and then use it in condition, e.g.

var a = 10;

var b = 5;

var res = a == b;

if (res == true)

 alert("Values are equal");

else

 alert("Values are different");

Notation

If Statement | FITPED

36

if (res == true)

can be usually written following

if (res)

because the result of the condition res == true is dependent on the value of the
variable res.

📝 3.2.4

Declare the variable x to save the result of the comparison of variable y and the
value 5 for equality.

_____ x;

var y = 7;

x = y _____ 5;

🕮 3.2.5

Many times there are tasks where we have to decide whether the given value is
even or odd.

When searching for a solution, we can use the fact that even numbers divided by 2
give the remainder after division 0 and odd numbers give 1.

E.g.:

• 20 % 2 = 0 – is even
• 15 % 2 = 1 – is odd

📝 3.2.6

Fill the gaps in the code to identify if the number on input is even or odd.

var a = 12;

if (a _____ 2 == 0) {

 alert("_____");

} _____ {

 alert("_____");

}

If Statement | FITPED

37

• else
• **
• odd
• -
• even
• /
• %

🕮 3.2.7

Often you combine in codes many conditions that can be in different relations.
Mostly we are in the following situations:

• all of the conditions have to be met at the same time,
• it is enough that only one of the conditions is met.

Based on the given age of the employee decide whether he/she is in productive age
- between 18 and 70 years old.

The task can be solved following:

var age = 22;

if (age >= 18) // first condition is met

 // we verify whether the age is also less then the upper

boundary

 if (age <= 70) // both of the conditions are met

 alert("he/she is in productive age");

A simple notation makes it possible to write both notations into one complex
condition. We use a logical connector AND (we use & in Java) to secure that both
conditions have to be met at the same time.

if ((age >= 18) && (age <= 70))

We put into the brackets each condition as well as the whole expression.

📝 3.2.8

Fill in the expression so that it is true if both conditions are met at the same time:

var month = 7;

if ((month >= 6_____ _____ (month <= 9_____

 alert("summer");

If Statement | FITPED

38

🕮 3.2.9

In some cases, it is necessary that only one condition needs to be met. In that case,
is used logical connector OR written using the symbol ||.

if ((a>0) || (b<0))

Evaluation of the expression is true if at least one of the conditions is met, i.e. it is
enough if a > 0 or b < 0.

If both conditions are met, the expression is also true.

Except the || operator can be used the alternative operator |.
Between the | and || operators is the difference that || will end
the evaluation of the logical expression in the moment it finds
out that the condition is true and the following evaluation does
not have effect on the result, where | evaluates till the end.

The same rules apply to & and &&.

📝 3.2.10

Fill in the code so that it prints whether the time (defined in hours 0-23)
corresponds to day or night. The day is from 6 till 18.

var time = 16;

if (time _____ 6) _____ (time _____ 18))

 alert("_____")

 alert("_____")

• <=
• >=
• night
• day
• ||
• else

Loops

Chapter 4

Loops | FITPED

40

4.1 For loops

🕮 4.1.1

If we need to repeat a command or sequence of commands multiple times, we can
use a loop. For example, to display a 5-times message with the text "Hello" it will
look like this:

alert("Hello");

alert("Hello");

alert("Hello");

alert("Hello");

alert("Hello");

But a much more logical option is to do this through a loop:

for(var i = 1; i <= 5; i++){

 alert("Hello");

}

🕮 4.1.2

The loop is defined by the for statement as follows:

for(var i = 1; i <= 10; i = i + 1) { // loop control

 command; // loop body, list of commands to be executed

}

The individual parts of the for loop are as follows:

• for(…) – a loop statement defining a loop with a known number of repetitions
• i – control variable
• i = 1 – set the initial value for the variable
• i <= 10 – condition until which the loop will be executed; as long as the

condition is true, the statement is executed in the body of the loop; if the
condition is not true, the cycle ends

• i = i + 1 – loop step, after executing the body of the loop, the value of the
control variable will always change according to the entry, i.e. it is
incremented by 1. Typically, the replacement is shorter: i++.

The run of the loop is controlled by an integer control variable, which is initially set
to the default value and changes at each step of the loop. If the condition of a loop
is not valid as a result of a variable change, execution of commands after the cycle
is continued.

Loops | FITPED

41

📝 4.1.3

Complete the program so that the text "Hello" is displayed 3 times.

_____(var i = 1; i <= _____; i++){

 alert("Hello");

}

🕮 4.1.4

The value contained in the control variable can be used in the loop for any
operation.

As an example, we use a program for listing numbers from 1 to 10. We also used
the control variable i in the body of the loop and included it in the variable output,
which we report using the alert() function at the end of the loop.

var output = "";

for(var i = 1; i <= 10; i++){

 output = output + i + ",";

}

alert(output);

As you execute the loop, each step adds a value to the text variable that contains i,
followed by a comma.

For individual i the content of the variable output will be as follows:

• 1 - 1, - to the empty variable output is added the value 1 and a comma
• 2 - 1,2, - to the content of the variable output (1,) is added the content i, i.e. 2

and comma
• 3 - 1,2,3, - to the content of the variable output (1,2,) is added the content i,

i.e. 3 and comma
• 4 - 1,2,3,4 - to the content of the variable output (1,2,3) is added the content i,

i.e. 4 and comma
• ...
• 10 - 1,2,3,4,5,6,7,8,9,10 and it ends.

📝 4.1.5

Fill in the correct values and variables in the program so that the program lists
numbers from 5 to 15.

var output = "";

Loops | FITPED

42

for(var i = _____; i <= _____; i++){

 output = output + _____ + ", ";

}

alert(output);

📝 4.1.6

How many times the following loop puts the word "Hello" in the variable output?

var output = "";

for(var i = 1; i < 5; i++){

 output = output + "Hello, ";

}

alert(output);

• 4 times
• 5 times
• 0 times
• 6 times

🕮 4.1.7

Although most loops use a change of 1 (i.e. i ++ or i = i + 1) to change the value of
the control variable, there are no limitations on its ability to change it. You can
decrease the value, change it by another value, multiply it, etc.

Here are two solutions for listing all even numbers from 2 to 100.

Increasing the control variable by 2.

var output = "";

for(var i = 2; i <= 100; i = i + 2){

 output = output + i + ", ";

}

alert(output);

Multiplying the control variable by 2.

var output = "";

for(var i = 1; i <= 50; i = i + 1){

 output = output + (i * 2) + ", ";

}

alert(output);

Loops | FITPED

43

... and other variations we could find more.

📝 4.1.8

Complete parts of the for loop so that the script lists all powers of two from 2 to
1024.

var output = "";

for(var i = 2; i _____ 1024; i = i _____ 2){

 output = output + i + ", ";

}

alert(output);

📝 4.1.9

Complete parts of the for loop so that the script prints numbers from 10 to 1 from
largest to smallest (i.e. 10, 9, 8,…, 2,1).

var output = "";

for(var i = _____; i >= 1; i = i _____ 1){

 output =output + i + ", ";

}

alert(output);

📝 4.1.10

What does the following code print on the screen?

var output = "";

for(var i = 1; i < 3 ; i = i + 1){

 output = output + i + ", ";

}

alert(output);

• numbers 1 and 2
• numbers 1, 2, and 3
• nothing
• numbers 2 and 3
• number 2

Loops | FITPED

44

4.2 While and do-while loops

🕮 4.2.1

Sometimes we do not know how many times the loop will have to be repeated, but
we can determine the condition by which the loop should be repeated. E.g.: while
you are hungry, eat a cupcake.

In this case, the execution of the loop can be ensured through the while statement
and the condition that the execution of the statements in the body of the loop will
be executed.

The format of a while loop is:

while (condition) {

 commands;

}

The condition must be enclosed in parentheses.

📝 4.2.2

Complete the parts of the loop with a start condition:

_____ _____condition_____ _____

 // commands;

• for
• do
• {
• while
•)
• (
• if
• }

🕮 4.2.3

The while loop will execute the commands defined in the loop body while the
defined condition is evaluated to true.

For example:

Loops | FITPED

45

var weight = 80;

while (weight < 100){

 alert("Eat!");

 weight = weight + 5;

}

alert("Ooh, I gained weight");

... increases the value of the variable weight (and prints "Eat!") while weight is less
than 100.

📝 4.2.4

What will be in the variable i after the loop ends?

var i = 5;

while (i < 100) {

 i = i * 2;

}

🕮 4.2.5

The while loop can solve similar problems to the for loop and can do the same as
the for loop if properly written.

In this case, it displays values 1-10.

var i = 1;

var output = '';

while (i <= 10) {

 output = output + i + ", ";

 i++;

}

alert(output);

If you forget to change (increase) the variable even used in the state,
the loop will never end. This will cause the browser to crash.

📝 4.2.6

What does the following script do?

var i = 1;

Loops | FITPED

46

while (i > 10) {

 alert("Hello")

 i++;

}

• Nothing
• Prints "Hello" 10 times
• Prints "Hello" 9 times
• Prints "Hello" once
• Prints "Hello" 11 times

📝 4.2.7

Write a script that prints the sum of numbers from 1 to 20.

sum = 0;

number = 1;

while (_____ <= _____) {

 sum = _____ + number;

 number_____;

}

alert("Sum of the first 20 numbers are: " + sum);

• 20
• sum
• ++
• +
• number
• 19
• 21
• number

🕮 4.2.8

The do-while loop executes a block of code and then checks whether the condition
is valid. Then, the code block executes the repetition as long as the condition is
valid.

This kind of loop does the activity as long as the condition is valid - but in the order
that it first does, then checks e.g. Eat the cake while you're hungry.

The form is:

Loops | FITPED

47

do {

 command1;

 ...

 commandn;

} while (condition);

e.g.:

int i = 1;

do {

 alert(i);

 i = i + 1;

} while (i < 5);

The main difference from other loops is that the commands in the body of the loop
are executed at least once. Only after their first execution, it is checked whether the
repetition should be continued.

📝 4.2.9

Complete the program so that it prints even numbers between 1-33.

var number = 1;

var end = 33;

_____ {

 if (number _____ 2 == _____)

 alert(number);

 number++;

} _____ (number <= end);

• %
• do
• -1
• /
• 1
• 0
• while
• if
• for

Loops | FITPED

48

🕮 4.2.10

Ensure that the 5 litre pot is filled with 1 litre jars until full.

var number_of_jars = 0;

do {

 alert("Pour!");

 number_of_jars++;

} while(number_of_jars < 5)

alert("Full pot");

📝 4.2.11

Complete the program so that the do-while loop prints numbers from 1 to 50

var output = '';

var i = 1;

_____{

 output = output + i + ',';

 i++;

}

_____(i <= _____)

alert(output);

4.3 Loops (programs)

📝 4.3.1

Fill in the code to show the values from 5 to 9:

for(i = _____ ; i < _____; i = i _____ 1) {

 alert(i);

}

📝 4.3.2

Make sure that the loop terminates:

for(var i = 10 ; i >= 5; i = i _____ 1) {

 alert(i);

}

Loops | FITPED

49

📝 4.3.3

Calculate the sum of the first 1000 positive numbers.

var sum = 0;

for(_____ i = _____; i <= _____; i_____) {

 sum = _____ + i;

}

alert(sum);

📝 4.3.4

Calculate the product between numbers stored in variables a and b where a < b.

var a = 10;

var b = 15;

var prod = _____;

for(var i = _____; i >= _____; i--) {

 prod = _____ * i;

}

alert(prod);

📝 4.3.5

Fill in the code so 8 dots are printed:

var i = 4;

var result = "";

_____ (i <= _____) {

 result = result + ".";

 i = i + 1;

}

alert(result);

📝 4.3.6

Fill the gaps in the program to get the number of divisors of the number stored in
variable num.

var num = 12;

var count = _____;

for(var i = 1; i <= _____; i++) {

 if (num _____ i _____ 0)

Loops | FITPED

50

 count_____;

}

alert(count);

• %
• !=
• count
• /
• num
• 0
• i
• ==
• ++
• --
• 1
• -1

📝 4.3.7

Fill the gaps in the program to identify if the number stored in the variable num is a
prime number.

var num = 47;

var count = 0;

for(var i = 1; i <= num; i++) {

 if (num _____ i _____ 0)

 count++;

}

if (count == _____)

 alert("is prime number");

else

 alert("is not prime number");

String

Chapter 5

String | FITPED

52

5.1 String type

🕮 5.1.1

A string is a basic data type in JavaScript. It consists of series of characters like "I
am hungry". In addition to the ability to keep text, it provides options for browsing
content, retrieving part of the stored text, counting characters, and more. Strings
are written with quotes and you can use both: single or double-quotes.

The most simple operation is getting the number of characters of the saved
content. We get it using the length method.

The method is separated from the name using the dot ".":

var data = "I am hungry";

var count = data.length;

alert(count);

Into the variable count is saved the number of characters that are contained in the
variable data, i.e. it's 11.

📝 5.1.2

What is the result of the following code? What value is stored in the variable len?

var data = "I want dog, cat and car.";

var len = data.length;

alert(len);

📝 5.1.3

Complete the code below:

var _____ = "Jan";

alert("Your name consists of " + name._____ + " chars.");

🕮 5.1.4

The string consists of characters. Each character has its place in the string that is
defined by the index. JavaScript indexes start from zero.

String | FITPED

53

The first character in the string is on position 0, the second is on position 1, etc.
The last character is placed on the position decreased by one from the whole count
of characters in the string.

E.g. for:

var data = "Superman";

are characters placed on each position following:

0 - S

1 - u

2 - p

3 - e

4 - r

5 - m

6 - a

7 - n

📝 5.1.5

Type the character on position 7 in string defined as:

var data = "It is cold here."

🕮 5.1.6

If we want to read a specific character on specific position, we use the following
code:

var data = "It is cold here.";

var character = data[7];

The variable character cointains 'o'.

The position of the character we want to get is written to [].

📝 5.1.7

Type the content stored in the variable result after the end of the next part of the
program:

var data = "Alphabet in computer."

String | FITPED

54

var result = data[3] + data[5] + data[8] + data[13] +

data[15];

🕮 5.1.8

If we want to compare strings, the character 'A' is not the same as the character 'a'.

Therefore, when writing the code we must be careful and write code for both
situations:

Check if the first letters of strings in variable a is 'h'.

var a = "Hello.";

if (a[0] == 'h' || a[0] == 'H')

 alert("yes, it is");

else

 alert("no, it is not");

Alternatively, you can use transformation to convert text to uppercase or lowercase.

The notation takes the form:

var a = "Hello.";

var low_a = a.toLowerCase(); // hello.

If we want to edit only conditions, we can use:

var a = "Hello.";

if (a[0].toLowerCase() == 'h') // one character is converted

 alert("yes, it is");

else

 alert("no, it is not");

Alternative toLowerCase() is toUpperCase() working under the same
rules.

📝 5.1.9

Fill the gap in code to check if the first characters in variables a and b are the same.

var a = "Hello.";

var b = "hello.";

if (a[_____]._____ _____ b[_____]._____)

 alert("the same");

else

String | FITPED

55

 alert("different");

• ==
• 1
• toLowerCase()
• 1
• !<|>
• =
• toLowerCase()
• toUpperCase()
• 0
• 0

5.2 Substring

🕮 5.2.1

We often need to get from the string not only one character but a substring. To
obtain the part of the string is used:

• substr method, where is defined the beginning position and count of
characters after this position,

• substring method, where it defines the beginning position and the ending
position of the substring. The character chosen at the ending position is not
counted to the substring. The method takes into account the characters from
the beginning position to the character before the ending position:

 var str = "Sagarmatha";

 var res = str.substr(2, 5); // garma 2,3,4,5,6 (5 chars)

 alert(res);

 var res = str.substring(2, 5); // gar 2,3,4 (chars 2 to 5-

1=4)

 alert(res);

The substring method has also a second form. In the case when we input only one
parameter it will return a substring from the given position till the end of the string.

 var str = "My long string";

 alert(str.substring(8)) // string

String | FITPED

56

📝 5.2.2

What is the result of the following code? What is the value of the variable res?

var str = "New York City";

var res = str.substring(4, 6);

📝 5.2.3

What is the result of the following code? What is the value of the variable res?

var str = "Don Quijote de la Mancha";

var res = str.substring(12);

📝 5.2.4

Fill the gaps to get the first and last character of content stored in the str variable.

 var str = "My long string";

 var first = str[_____];

 var last = str[str._____ - _____];

 alert(first + last); // Mg

🕮 5.2.5

The occurrence of the substring in the existing string is verified by the indexOf()
method and returns the position where the substring is placed.

var text = "Jan Amos Comenius";

var pos = text.indexOf("Amos");

The variable pos will contain the value 4 because the 4th position was first found at
the beginning of the searched substring.

In case that the searched substring is not found in the string, it returns the value -1.
This can be used to notify the user.

 var text = "Jan Amos Comenius";

 var pos = text.indexOf("abc");

 if (pos == -1)

 alert("Substring was not found.")

 else

 alert("Substring beginns at position " + pos + ".");

String | FITPED

57

📝 5.2.6

Complete the code to find if the first string contains the second string or the
second string contains the first one:

 var first = "winter is nice";

 var second = "nice";

 var pos = _____.indexOf(_____);

 if (pos > _____)

 alert("first contains second")

 else

 alert("first doesn't contains second");

 var pos2 = _____.indexOf(_____);

 if (pos2 _____ -1)

 alert("second doesn't contains first")

 else

 alert("second contains first");

• 1
• ==
• -1
• 0
• first
• >=
• first
• second
• second

📝 5.2.7

What is the result of the following code written in alert?

var a = "New York";

var b = "or";

alert(b.indexOf(a));

📝 5.2.8

Complete the code to find the initials of the name stored in the variable name. The
initials always start after the space:

var name = "don Quijote de la Mancha";

String | FITPED

58

var initials = _____; // prepare empty inicials

do { // al least one initial must be in name

 initials = initials + name[_____]; // first character is

initial

 var pos = name.indexOf(_____); // separator of names

 if (pos > _____) // if there is some space delete part to

space

 name = name._____(_____); // copy string from char after

space

} _____ (pos > _____) // while was space in name

alert(initials);

• substr
• while
• pos
• 1
• -1
• 0
• 0
• substring
• -1
• " "
• pos + 1
• 0
• 1
• pos - 1
• ""

🕮 5.2.9

We need to transform a string into a number sometimes. The parseInt() function
parses a string and returns an integer.

E.g.:

var sNum = "100";

var num = parseInt(sNum);

alert(sNum + sNum) ; // 100100

alert(num + num) ; // 200

If the first character cannot be converted to a number, parseInt()
returns NaN. If some of next characters cannot be converted parseInt
return only a converted part e.g. parseInt("12a3") returns 12.

To check the result of conversion we use isNan(variable).

String | FITPED

59

The reverse conversion can be achieved by adding the numerical value to the string
value (e.g. empty string).

var num = 10;

var sNum = "" + num;

📝 5.2.10

Complete the following program. If the number is stored in the variable, write his
double side otherwise, request it to be re-entered.

var a = "105";

var num = _____(a);

if (_____(num))

 alert("try again");

else

 alert(num*2);

5.3 String (programs)

📝 5.3.1

Complete the code that will create a mirror image of the given text, e.g.:

Mother -> rehtoM

winter -> retniw

var text = "Aladin";

var res = "";

var character = "";

for(var i = 0; i < text._____; i++) {

 character = text.substring(i,_____);

 res = _____ + _____; // the char is put before string

}

alert(res);

📝 5.3.2

Complete the following code and find out how many times is the digit 7 repeated in
the given string.

String | FITPED

60

var text = "676776";

var count = 0;

var character, num;

for(var i = 0; i < text._____; i++) {

 character = text._____(i,_____);

 if (character _____ "7")

 count++;

}

alert(count);

📝 5.3.3

Complete the code that returns the count of the digits stored in the string variable.

var text = "125a4as0";

var count = _____;

var character, num;

for(var i = 0; i < text.length; i++) {

 character = text.substring(_____,_____);

 num = parseInt(character);

 if (!_____(num))

 count++;

}

alert(count);

📝 5.3.4

Complete the code that returns the sum of the digits of the number you entered.

Input : 123

Output: 6

var text = "12548";

var sum = _____;

var character, num;

for(var i = 0; i < text._____; i++) {

 character = text._____(i,i+1);

 num = _____(character);

 sum = sum + _____;

}

alert(sum);

• length

String | FITPED

61

• 1
• character
• num
• parseInt
• length()
• int
• substr
• substring
• 0

📝 5.3.5

Complete the code that returns the product of the digits of the number you entered.

Input : 123

Output: 6

var text = "12548";

var prod = _____;

var character, num;

for(var i = 0; i < text._____; i++) {

 character = text._____(i,i+1);

 num = _____(character);

 prod = prod * _____;

}

alert(prod);

Arrays

Chapter 6

Arrays | FITPED

63

6.1 Arrays

🕮 6.1.1

More than 90 % of applications need for their work lists. The example of lists are
people, invoices, cars, measured values, etc.

The most simple list that we have already worked with is a string - it contains the
list of characters ordered into a string that allows reading, adding, deleting, etc.

The access to specific characters of the list was secured through the index:

var str = "Aladin"

str[0] - A

str[1] - l

str[2] - a

str[3] - d

str[4] - i

str[5] - n

📝 6.1.2

What is the result of the output of the program?

var str = "South America";

alert(str[str.length - 2]);

🕮 6.1.3

To create lists of data of the same type is used the data type array. We can create
an array with values using:

var cars = ["Audi", "Peugeot", "BMW"];

or

var cars = new Array("Audi", "Peugeot", "BMW");

The access to each element is done using an index where the first value is saved at
position 0, e.g.:

alert(cars[0]); // Audi

alert(cars[1]); // Peugeot

alert(cars[2]); // BMW

Arrays | FITPED

64

📝 6.1.4

What is the result of the output of the program?

var cars = ["Audi", "Peugeot", "BMW"];

alert(cars[0]+cars[2]);

🕮 6.1.5

The last element in the array has the index numberOfElements - 1. We can get the
number of elements using array.length, e.g.

var cars = ["Audi", "Peugeot", "BMW"];

alert(cars.length); // 3

During the execution of the program can be the value of the element changed
following way:

cars[0] = "Suzuki";

📝 6.1.6

What is the result of the output of the program?

var numbers = [1, 2, 3, 8, 9, 7, 5];

for(var i = 0; i < numbers.length; i++) {

 numbers[i] = numbers[i] + i;

}

alert(numbers[3] + numbers[5]);

🕮 6.1.7

To add a new element into the array we have two ways:

The simplest way is to use push to add a new element to the end of the array:

var data = [10, 20, 30, 50];

data.push(321); // [10, 20, 30, 50, 321];

Arrays | FITPED

65

📝 6.1.8

Fill the gap in the code to add a new element to the end of the array and show the
list of elements in alert:

var data = ["A", "B", "C", "D", "E"];

data._____("X"); // add new element to the end of array

var res = "";

for(var i = 0; i < data._____; i++) {

 res = res + data[i] + ",";

}

alert(res); // list of elements separated by comma

🕮 6.1.9

The second way allows setting the i-th element to the new value.

If we use the index immediately following the index of the last element, a new
element after the last one will be added.

var myInputs = ["A", "B", "C", "D", "E"];

myInputs[5] = "F"; // A B C D E F

If we use the index not immediately following the index of the last element, the new
element will be added and elements between the last and new element will be set
to undefined.

var myInputs = ["A", "B", "C"];

myInputs[5] = "X"; // A B C undefined undefined X

📝 6.1.10

Fill the gap in the code to add a new element after the end of the array to achieve
the following result:

A, B, C, D, E, undefined, X

var data = ["A", "B", "C", "D", "E"];

data[_____] = "X";

var res = "";

for(var i = 0; i < data.length; i++) {

 res = res + data[i] + "_____";

}

alert(res);

Arrays | FITPED

66

6.2 Arrays processing

🕮 6.2.1

The arrays in JavaScript can contain different types of values, e.g.:

var data = ["Paris", "France", -8000, 105, 2148271];

where the data represents the name, country, year of foundation, area and
population.

To get data we use a familiar approach:

data[0] .. data[4]

📝 6.2.2

Fill the gap to achieve a population of Madrid.

var data = ["Madrid", "Spain", 900, 605, 3165541];

alert(_____[_____]);

🕮 6.2.3

A useful method to prepare output with arrays elements is toString(). The method
converts an array to a string of comma-separated array values.

var data = ["Anna", "Ivan", "Juanita", "George", "Dieter"];

alert(data.toString()); // Anna,Ivan,Juanita,George,Dieter

The join() method creates an output of all array elements, but we can specify the
separator too, e.g.:

var data = ["Anna", "Ivan", "Juanita", "George", "Dieter"];

alert(data.join(" - ")); // Anna - Ivan - Juanita - George -

Dieter

📝 6.2.4

Use methods toString() and join() to achieve the following outputs:

Arrays | FITPED

67

var data = ["A", "B", "C", "D", "E"];

alert(data._____); // A,B,C,D,E

alert(data._____(_____)); // A, B, C, D, E

alert(data._____(_____)); // A , B , C , D , E

alert(data._____(_____)); // A - B - C - D - E

• join
• ", "
• " , "
• tostring
• ", "
• toString()
• join
• toString()
• join
• " - "
• toString
• ","

🕮 6.2.5

The pop() method removes the last element from an array:

var data = ["A", "B", "C", "D", "E"];

data.pop(); // A, B, C, D

📝 6.2.6

What is the result of the following code? What content is stored in variable res after
its execution?

var data = ["A", "B", "C"];

data.pop();

data.push("X");

data.push("Y");

data.pop();

data.push("Z");

var res = data.join(",")

alert(res);

Arrays | FITPED

68

🕮 6.2.7

Method splice() is used for:

• adding a new element(s) into the array to any position,
• remove existing element(s) from any position.

To add elements is simple:

var data = ["A", "B", "C", "D", "E"];

data.splice(3,0,"X","Y"); // A,B,C,X,Y,D,E

• The first parameter (3) defines the position where new elements (defined
later) will be inserted.

• The second parameter (0) is used for deletion - not interesting for us now.
• Next parameters (any count) defined elements for insertion.

In code, we add new elements starting from position 2.

📝 6.2.8

Update the array to achieve results A, B, X, Y, Z, C, K, L, D, E, F.

var data = ["A", "B", "C", "D", "E"];

data._____(_____, 0, "X", "Y", "Z");

data._____(_____, 0, "K", "L");

data._____(_____, 0, "F");

🕮 6.2.9

Method splice() can be used for removing elements:

To remove elements is simple:

var data = ["A", "B", "C", "D", "E"];

data.splice(1,2); // A,D,E

• The first parameter (1) defines the position where to start with deletion.
• The second parameter (2) defines how many elements we want to delete.
• Parameters for insertion we don't define now.

In the code, we removed 2 elements starting on position 1.

Arrays | FITPED

69

📝 6.2.10

Update the array to achieve results A, B, C, F.

var data = ["A", "B", "C", "D", "E", "F"];

data._____(_____, _____);

🕮 6.2.11

We can use a combination of removing and inserting (replacing) elements.

In the same splice() command, we can remove elements started at the defined
position and later add elements placed from the same position.

The structure of command is as follow:

var data = ["A", "B", "C", "D", "E"];

data.splice(1, 2, "X", "Y", "Z"); // A, X, Y, Z, D, E

• The first parameter (1) defines the position where to start with deletion.
• The second parameter (2) defines how many elements we want to delete.
• Parameters for insertion are three and they are inserted from position 1 in

the array.

In the code, we removed 2 elements and added 3 elements. Both operations started
at position 1

📝 6.2.12

Update the array to achieve results A, B, X, Y, F.

var data = ["A", "B", "C", "D", "E", "F"];

data.splice(_____, _____, "_____", "_____");

6.3 Arrays (programs)

📝 6.3.1

Complete the program that prints the number of occurrences of a given value in the
given array.

var data = [10, 5, 15, 5, 7, 11, 5];

var el = 5

Arrays | FITPED

70

var count = _____;

for(var i = 0; i < data._____; i++) {

 if (data[_____] _____ el)

 count_____;

}

alert(count);

📝 6.3.2

Complete the code that prints the largest value of the given array.

var data = [10, 5, 15, 5, 7, 11, 5];

var max = data[0];

for(var i = _____; i < data._____; i_____) {

 if (data[i] > _____)

 max = data[_____];

}

alert(max);

📝 6.3.3

Complete the code that calculates the average value of a given array.

var data = [10, 5, 15, 5, 7, 11, 5];

var sum = 0

for(var i = 0; i < data._____; i++) {

 sum = sum _____ data[_____];

}

var avg = sum/data._____;

alert(avg);

📝 6.3.4

Complete the code that prints all the array elements divisible by a given value for
the given integer array.

var data = [6, 24, -8, -12, 21, 7, 4, 4];

var number = 4;

var res = "";

for(var i = 0; i < data._____; i++) {

 if (data[i] _____ number _____ _____)

 res = res + data[i] + ",";

Arrays | FITPED

71

}

alert(res);

📝 6.3.5

Complete the program to create a new array based on the data from the default
array. Copy only items containing the specified string.

var data = ["Madrid", "Paris", "Stockholm", "London",

"Florida"];

var search = "ri";

var new_array = _____; // empty array definition

for(var i = 0; i < data._____; i++) {

 if (data[i]._____(search) > -1)

 new_array._____(data[i]);

}

alert(new_array.toString());

Functions

Chapter 7

Functions | FITPED

73

7.1 Functions

🕮 7.1.1

A function is a fragment of code (a set of statements), which can be called by code
external to the function. Functions can also be called internally in case of recursion.

A function has a name, body, and parameters.

function myFunction(par1, par2) {

 // body of function

}

The name identifies the function within an application. Simply defining a function
does not execute it; we need to call it. Calling a function actually performs the
specified code statements from the function body with the indicated parameters.

...

myFunction(1,2)

Moreover, each function returns a value. The default return value is undefined, but
you can change it by using the keyword return.

There are also functions without names, we call
them anonymous functions and they will be described in the
next sections.

In JavaScript, functions are objects (they are prototypes of
the Function object), which means you can add new properties and
methods to them. However, functions can be called, and this is what
distinguishes them from other objects. Functions have an important
role in JavaScript because they create new variable scopes.

📝 7.1.2

Complete the function structure:

_____ _____(_____) _____

}

• functionName
• function
• {
• parameter
• // function body

Functions | FITPED

74

📝 7.1.3

What does the below function return?

function foo() {

 alert('Fitped');

}

• undefined
• Fitped
• null

🕮 7.1.4

The first way of defining a function is a function declaration. The function
declaration starts with the function keyword, followed by a function's name, a list of
parameters, and code statements enclosed in curly brackets {}. See the basic code
below:

function functionName(parameter1, parameter2) {

 statements;

}

As you can see, the list of parameters to the function is enclosed in parentheses
and separated by commas. Parameters are input data, and we use them to pass
values for the function's code. Parameters are also called arguments. Let's start
with the declaration of a very basic summation function:

function sum(a, b) {

 return a + b;

}

sum(1, 2); // 3

The above function adds two numbers and returns the result of this summation.

📝 7.1.5

What is the result of this code:

function process(a, b) {

 return a * b + 5 - b;

}

Functions | FITPED

75

process(10, 2); // ???

🕮 7.1.6

The console.log function is a procedure that allows displaying values in the
console.

The function is available either in every modern browser (use the F12
key to open it) or the Node.js interpreter.

Functions must be in scope when they are called, but the function declaration can
be hoisted, which means you can call a function before its declaration. Note, this
works only for named functions with functions declarations. See the example
below:

console.log(sum(1, 2)); // 3

function sum(a, b) {

 return a + b;

}

The scope of a function is the function in which it is declared, or the entire program
if it is declared at the top level.

📝 7.1.7

Complete the code to output the function result to the console:

function process(a, b) {

 return a * b;

}

_____._____(process(5, 8)); // 40

🕮 7.1.8

The second method of defining a function is a function expression. A function is
just a value and can be assigned to a variable:

let foo = function (a, b) {return a * b};

Functions | FITPED

76

After a function expression has been stored in a variable, the variable can be used
as a function. A function expression stores in a variable does not require a name;
hence, we call it an anonymous function.

console.log(foo(5, 3)); // 15

There are several different ways that function expressions become more useful
than function declarations:

• using them as closures,
• using them as arguments to other functions,
• using them as Immediately Invoked Function Expressions (IIFE).

📝 7.1.9

Complete the function as expression:

_____ sum = _____ (a, b) {_____ a + b};

• def
• funct
• run
• func
• let
• function
• return

7.2 Function parameters

🕮 7.2.1

Function parameters is the list of variable names listed in the function definition,
whereas arguments are the real values passed to (and received by) the function.

function foo(parameter1, parameter2, parameter3) {

 // ...

}

A JavaScript function definition does not specify data types for parameters (it can
be done in other languages like TypeScript) and hence does not perform type
checking on the passed arguments.

JavaScript functions do not even check the number of arguments received.

Functions | FITPED

77

If a function is called with missing arguments (less than declared), the missing
values are set to: undefined.

function foo(parameter1, parameter2, parameter3) {

 console.log(parameter1);

 console.log(parameter2);

 console.log(parameter3);

}

foo(1, 2); // 1 2 undefined

📝 7.2.2

Does it need to specify a data type of parameters in the function header?

• no
• yes

🕮 7.2.3

In the newer version of JavaScript, it is allowed to assign default parameter values
in the function declaration:

function foo(parameter1, parameter2, parameter3=3) {

 console.log(parameter1);

 console.log(parameter2);

 console.log(parameter3);

}

foo(1, 2); // 1 2 3

If a function is called with too many arguments (more than declared), these
arguments can be reached using the arguments object. The argument object
contains an array of the arguments used when the function was called (invoked):

function foo() {

 console.log(arguments);

}

foo(1, 2, 3); // [1, 2, 3]

📝 7.2.4

Given the following code, what will be the console output when foo() is executed?

Functions | FITPED

78

function foo(a, b, c) {

 console.log(a + b + c);

};

foo('a ', 'b ');

• a b
• a b undefined
• a b c

📝 7.2.5

What is the name of the special object that contains all values passed to a
function?

• arguments
• variables
• parameters

📝 7.2.6

Fill the gaps in the code to achieve output:

1

8

2

Code:

function foo(parameter1_____, parameter2_____,

parameter3_____) {

 console.log(_____);

 console.log(_____);

 console.log(_____);

}

foo(1, 2);

•
• parameter2
• parameter1
•
• = 8
• parameter3

Functions | FITPED

79

📝 7.2.7

Fill the gaps in the following code:

_____ foo(a, b=_____) {

 _____ a*b;

}

console.log(foo(5)); // should be 15

🕮 7.2.8

Arrow functions are a more concise syntax for writing function expressions. There
are several syntaxes available for declaring arrow functions:

let foo = (parameter1, parameter2, ..., parameterN) => {

statements }

let foo = (parameter1, parameter2, ..., parameterN) =>

expression

// equivalent to: => { return expression; }

// Parentheses are optional when there's only one parameter

name:

let foo = (singleParameter) => { statements }

let foo = singleParameter => { statements }

// The parameter list for a function with no parameters should

be written with a pair of parentheses.

let foo = () => { statements }

📝 7.2.9

Fill the gaps in the following code:

let foo = (a, b) _____ a + b;

console.log(foo(10, 5)); // should be 15

Document Object Model
(DOM)

Chapter 8

Document Object Model (DOM) | FITPED

81

8.1 Introduction to DOM

🕮 8.1.1

The DOM (Document Object Model) is a cross-platform and language-independent
interface that is an API for HTML and XML documents. The DOM represents the
structure of a document as a logical tree, wherein each node is an object
representing a part of the document.

Additionally, the DOM is the programming interface for events, aborting activities,
and accessing the tree, which can be used for changing the structure, style or
content of the document.

The DOM model is based on the W3C DOM standard, see this link if you want to
learn more about it.

The consecutive versions of the DOM specification are called DOM Levels. Each
new level of the DOM adds or changes specific sets of features.

• The DOM Level 1 defines the core elements of the Document Object Model.
• The DOM Level 2 extends those elements and adds events.
• The DOM Level 3 extends the DOM Level 2 and adds more elements and

events.
• The DOM Level 4 was published in 2015. It was a snapshot of the DOM

Living Standard, which is the current standard.

📝 8.1.2

What is the meaning of DOM?

• Document Object Model
• Developer Object Model
• Development Object of Model
• Development Object Model

🕮 8.1.3

DOM is just an interface and not a ready-to-use library. In this section, the
implementation of DOM for web browsers will be described. It is known as the
HTML DOM (the standard model for HTML documents). It defines:

• the HTML elements as objects,
• the properties of all HTML elements,

Document Object Model (DOM) | FITPED

82

• the methods to access all HTML elements,
• the events for all HTML elements.

We can say that the HTML DOM is a standard for how to get, change, add, or delete
HTML elements. Besides that, there are other standards like the Core
DOM and XML DOM, which are not explained in this course.

📝 8.1.4

Which of the following sentences is correct?

• The DOM was created especially for the CSS technology.
• The DOM is a programming interface.
• The DOM uses a queue structure for the document representation.
• The DOM allows handling events through the API.
• The DOM is a binary description of a web page.

📝 8.1.5

Select the parts defined in DOM

• HTML elements
• properties of HTML elements
• methods to access HTML elements
• events for HTML elements
• links to other web pages
• targets of links defined in the webpages

🕮 8.1.6

When a web page is loaded, the browser creates the Document Object Model (also
known as a DOM tree) - the browser needs to know the entire structure before
building a tree. See the example of HTML code below:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 </body>

Document Object Model (DOM) | FITPED

83

</html>

The above code will produce the following DOM model:

As you can see, the structure consists of all elements from the original HTML code,
special #text nodes, which are in fact new lines, tabs and spaces from the source
code. You can easily create more examples by using the following tool. The next
cards in this section will outline more details of the DOM tree.

📝 8.1.7

Is the following DOM tree correct according to the code?

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 <p>Click here.</p>

 </body>

</html>

Document Object Model (DOM) | FITPED

84

• Yes
• No

📝 8.1.8

Is the following DOM tree correct according to the code?

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 <p>Click here.</p>

 <p class="footer">Copyright © 20xx</p>

 </body>

</html>

Document Object Model (DOM) | FITPED

85

• No
• Yes

🕮 8.1.9

Websites are built based on three technologies: HTML (HyperText Markup
Language), CSS (Cascading Style Sheets) and JavaScript. All of them are handled
directly by a browser (e.g. Chrome or Firefox).

The implementation of the HTML DOM in web browsers is written in JavaScript, so
with JavaScript code, you can:

• change all the HTML elements on the page,
• change all the HTML attributes on the page,
• change all the CSS styles on the page,
• remove existing HTML elements and attributes,
• add new HTML elements and attributes,
• react to all existing HTML events in the page,
• create new HTML events on the page.

It is assumed that the reader is already familiar with the basics of HTML and CSS.

🕮 8.1.10

Document Object Model (DOM) | FITPED

86

The HTML DOM tree, wherein all HTML elements are defined as objects, can be
accessed through JavaScript.

The DOM programming interface for JavaScript is just a set of properties and
methods of each object. Properties of HTML elements are values that you can set
or change, whereas methods are actions you can perform on HTML elements.

The object document is the entry point for accessing the DOM API. In simple terms,
the document object is the root of the DOM tree. Each node in the tree has its own
type that provides properties and methods proper for the element represented by
the node. See the below image to learn more about JavaScript's DOM class
hierarchy.

There are 12 node types, but in practice, we usually work with 4 of them:

• Document (the document object)
• Element (HTML elements);
• Node (more general type than element);
• Text/comment.

📝 8.1.11

What are the most used elements of DOM?

• document
• element
• node
• text/comment

Document Object Model (DOM) | FITPED

87

• picture
• common object
• page of web

🕮 8.1.12

Look at the below example of using the DOM API. Let's have the following code:

<p class="lead">A sample paragraph</p>

We can modify the HTML structure with the API:

document.querySelector('.lead').id = 'test';

The modified version of the code after the execution of the above JavaScript code:

<p id="test" class="lead">A sample paragraph</p>

In order to use the DOM API, the logical structure of a page needs to be loaded
completely. To make sure that your JavaScript code will work properly, put your
code before the end of the <body> tag or use events (these will be explained later in
this course).

You can press the F12 key to open the developer tools and depending on a browser,
go to the tab called HTML/Elements to check the DOM tree of the current page.

📝 8.1.13

Which key opens the developer console in modern web browsers?

• F12
• F11
• F10

🕮 8.1.14

The nodes in the DOM tree have a hierarchical relationship to each other. The
terms: parent, child, and sibling are used to describe connections between the
nodes. See the example below:

<!DOCTYPE html>

<html lang="en">

Document Object Model (DOM) | FITPED

88

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 </body>

</html>

• <html> is the root node.
• <html> has no parents.
• <html> is the parent of <head> and <body>.
• <head> is the first child of <html>.
• <body> is the last child of <html>.
• <head> has one child: <title>.
• <title> has one child (a text node): Sample title.
• <body> has two children: <h1> and <p>.
• <h1> has one child: Sample header.
• <p> has one child: A sample paragraph.
• <h1> and <p> are siblings.

📝 8.1.15

Fill the gaps to describe the following DOM tree:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 <p>Click here.</p>

 <p class="footer">Copyright © 20xx</p>

Document Object Model (DOM) | FITPED

89

 </body>

</html>

_____ is the root node.

<body> has _____ children.

<h1> has _____ child: Sample header.

<p> is the _____ of <a>.

• parent
• <|head>
• four
• one
• click
• <|/body>
• <html>

8.2 Document properties

🕮 8.2.1

To access any element in an HTML page, you always start with accessing
the document object. The document object provides a set of properties and
methods for manipulating and finding objects in the tree.

The document object is easily accessible with the global variable document. See
the example below:

console.log(typeof document); // object

The document properties provide access to the tree's elements. For
example document.body is a reference to the <body> element.

📝 8.2.2

What part of DOM provides access to the tree's elements?

• document properties
• document content
• document getters

Document Object Model (DOM) | FITPED

90

🕮 8.2.3

New nodes in the DOM tree (as well as in the structure of the document) can be
created with the method document.createElement({tag name}).

You should provide the tag`s name that you want to create, as an argument of the
method.

document.createElement("p"); // creates a <p> element

document.createElement("a"); // creates a <a> element

document.createElement("button"); // creates a <button>

element

After the element creation, use the parent.appendChild({new
element}) or parent.insertBefore({new element}, {existing element}) method to
insert it to the document. Let's have the following HTML code:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>My content</h1>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Some text..."; // insert text

 document.body.appendChild(p);

 var q = document.createElement("p");

 q.innerHTML = "Some second text..."; // insert

text

 document.body.appendChild(q);

 </script>

 </body>

</html>

After execution, the document should be as follows:

MY CONTENT

Some text...

Some second text...

The parent.appendChild({new element}) method appends a node as the last child of
a node.

Document Object Model (DOM) | FITPED

91

📝 8.2.4

Order the lines on the web page after script code execution:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "My first text"; // insert text

 document.body.appendChild(p);

 var q = document.createElement("p");

 q.innerHTML = "My second text"; // insert text

 document.body.appendChild(q);

 </script>

 <p>Prepared content in paragraph</p>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "My third text"; // insert text

 document.body.appendChild(p);

 </script>

 </script>

 </body>

</html>

• My third text
• My first text
• My second text
• Prepared content in the paragraph

🕮 8.2.5

The following code:

var p = document.createElement("p");

p.innerHTML = "Some text...";

document.body.appendChild(p);

document.body.appendChild(p);

The above code will not add two <p> elements.

Document Object Model (DOM) | FITPED

92

This is because the second call of the appendChild will try to add an element that is
already in the tree.

The solution for creating the same object twice is
method element.cloneNode({deep}).

The code below:

var p = document.createElement("p");

p.innerHTML = "Some text..."; // insert text

document.body.appendChild(p);

var clonedP = p.cloneNode(true);

document.body.appendChild(clonedP);

The element.cloneNode({deep}) method creates a copy of a node, and returns the
clone.

Set the deep parameter value to true if you want to clone all children,
otherwise false.

📝 8.2.6

Order the lines on the web page after script code execution:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Start line with text"; // insert

text

 document.body.appendChild(p);

 var clone = p.cloneNode(true);

 document.body.appendChild(clone);

 </script>

 <p>Prepared content in paragraph</p>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Last line with text"

 document.body.appendChild(p);

 </script>

 </body>

</html>

Document Object Model (DOM) | FITPED

93

• Last line with text
• Start line with text
• Prepared content in the paragraph
• Start line with text

🕮 8.2.7

The insertBefore({new child node}, {subsequent child node}) method inserts the
new child node before the subsequent one.

The following code inserts the element to the specific position:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Some text..."; // insert text

 document.body.appendChild(p);

 var a = document.createElement("a");

 a.innerHTML = "Link";

 document.body.insertBefore(a, p);

 </script>

 </body>

</html>

After execution, the structure of the document should be as follows:

<a>Link

<p>Some text...</p>

📝 8.2.8

Order the lines on the web page after script code execution:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var a = document.createElement("p");

Document Object Model (DOM) | FITPED

94

 a.innerHTML = "1111111"; // insert text

 document.body.appendChild(a);

 var b = document.createElement("p");

 b.innerHTML = "2222222";

 document.body.insertBefore(b, a);

 var c = document.createElement("p");

 c.innerHTML = "3333333";

 document.body.insertBefore(c, a);

 var d = document.createElement("a");

 d.innerHTML = "4444444";

 document.body.insertBefore(d, b);

 </script>

 </body>

</html>

• 4444444
• 2222222
• 1111111
• 3333333

🕮 8.2.9

The parent.appendChild({new element}) method appends a node as the last child of
a node.

The parent.insertBefore({new element}, {existing element}) inserts a new child node
before a specified, existing, child node.

The creation of nodes is not limited to HTML elements, you can also create a text
node:

var h = document.createElement("h1"); // creates a <h1>

element

var t = document.createTextNode("Sample header"); // creates a

text node

h.appendChild(t); // appends the text to <h1>

The above code should produce the following HTML structure:

<h1>Sample header</h1>

Document Object Model (DOM) | FITPED

95

📝 8.2.10

Which of the following methods create new objects?

• parent.replaceChild
• document.createElement
• parent.removeChild
• parent.appendChild
• document.createTextNode

📝 8.2.11

Complete the code to achieve this structure:

Main header
text of paragraph

Header

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var ha = document._____("h1");

 var ta = document._____("Main header");

 var hb = document._____("h2");

 var tb = document._____("Header");

 var hc = document._____("p");

 var tc = document._____("text of paragraph");

 ha.appendChild(ta);

 hb._____(tb);

 hc._____(tc);

 document.body.appendChild(hc);

 document.body.insertBefore(_____, _____);

 document.body.appendChild(_____);

 </script>

 </body>

</html>

• createTextNode

Document Object Model (DOM) | FITPED

96

• appendChild
• hc
• createTextNode
• ha
• createElement
• createElement
• hb
• createElement
• createTextNode
• appendChild

🕮 8.2.12

Sometimes, you want to add several elements at the same moment. Adding them
one by one using appendChild is not efficient, because the DOM tree is reloaded
after each appendChild call. You should use
the document.createDocumentFragment() method instead.

var d = document.createDocumentFragment();

d.appendChild(document.createElement("h1"));

d.appendChild(document.createElement("p"));

document.body.appendChild(d);

The createDocumentFragment method creates an imaginary node, where you can
change, add, or delete, some of the content. These changes do not destroy the
document structure, so it can be safer to extract only parts of the document, modify
them and insert them back to the document.

📝 8.2.13

Complete the code to achieve this structure using fragment document:

Main header
Header

text of paragraph

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

Document Object Model (DOM) | FITPED

97

 var ha = document.createElement("h1");

 var ta = document.createTextNode("Main header");

 var hb = document.createElement("h2");

 var tb = document.createTextNode("Header");

 var hc = document.createElement("p");

 var tc = document.createTextNode("text of paragraph");

 ha.appendChild(ta);

 hb.appendChild(tb);

 hc.appendChild(tc);

 var frag = document._____(); // create fragment

 frag._____(ha);

 frag._____(hb);

 frag._____(hc);

 document._____._____(frag);

 </script>

 </body>

</html>

• appendChild
• createDocumentFragment
• fragment.appendChild
• appendChild
• fragment.appendChild
• fragment.appendChild
• body
• doc.appendChild
• appendChild
• doc.appendChild
• doc.appendChild
• appendFragment
• appendChild

8.3 Accessing elements

🕮 8.3.1

To access elements of the DOM tree, you can use several methods, i.e.:

• finding elements based on a document structure,
• finding elements based on CSS classes, HTML tags, IDs, and names,
• accessing elements based on pre-defined collections.

Based on a web browser and used method, there are 3 possible outcomes:

Document Object Model (DOM) | FITPED

98

• a NodeList object, which is a list (collection) of nodes (it can contain any
type of nodes, like text, elements, and so on);

• an HTMLCollection object, which is a list of elements limited to
the Element type;

• a Node or Element type object.

All returned collections are sorted as they appear in the source code and can be
accessed by index numbers. The index starts at 0.

It is worth stressing that collections mentioned here are not arrays.
You can loop through them and refer to their nodes like an array, but
you cannot use methods, like valueOf(), push(), pop() or join().

📝 8.3.2

Is it true?

The elements of the DOM tree can be processed with some array functions. It is
possible to achieve them using indexes.

• yes
• no

🕮 8.3.3

Traversing the DOM tree means finding elements based on their relation to other
elements. With traversing, you can move up (ancestors), down (descendants) and
sideways (siblings) in the DOM tree, starting from the selected (current) element.

Each element has build-in methods that allow accessing related objects.
The childNodes property returns a collection of a node's child nodes, as
a NodeList object. See the example below.

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p>A sample paragraph</p>

 </body>

</html>

console.log(document.body.childNodes); // [text (new line and

spaces), h1 element, text, p element, text]

Document Object Model (DOM) | FITPED

99

A similar method to the childNodes is the children property, which returns a
collection of an element's child elements, as an HTMLCollectionobject, so the
outcome of that method will be limited to HTML elements only.

console.log(document.body.children); // [h1 element, p

element]

We can easily access the first and last child of the specified element.
The firstChild property returns the first child node, whereas thelastChild property
returns the last child node. The firstChild and lastChild properties return the
relevant node as a Node object.

console.log(document.body.firstChild); // text

console.log(document.body.lastChild); // text

To return HTML elements only, use
the firstElementChild and lastElementChild property instead.

console.log(document.body.firstElementChild); // h1 element

console.log(document.body.lastElementChild); // p element

Finally, the hasChildNodes() method returns true if the specified node has any child
nodes, otherwise false.

📝 8.3.4

In the following HTML structure:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>My article</h1>

 <p>A sample paragraph</p>

 <h2>Second level</h2>

 </body>

</html>

choose the correct answers:

console.log(document.body.firstElementChild); // _____

console.log(document.body.lastElementChild); // _____

console.log(document.body.firstChild); // _____

Document Object Model (DOM) | FITPED

100

console.log(document.body.lastChild); // _____

• A sample paragraph
• text
• h1
• text
• p
• Second level
• My article
• h2

🕮 8.3.5

Let's have the following HTML structure:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p>A sample paragraph</p>

 </body>

</html>

The nextSibling property returns the node immediately following the specified node,
at the same tree level.

console.log(document.body.firstChild.nextSibling);

// h1 element, the first child is a text node

Respectively, the nextElementSibling property returns the element immediately
following the specified element, in the same tree level.

console.log(document.body.firstChild.nextSibling.nextElementSi

bling);

// p element, not a text node

Correspondingly, the previousSibling property returns the previous node of the
specified node and the previousElementSibling property returns the
previous element of the specified element, at the same tree level.

console.log(document.body.lastChild.previousSibling); // p

element

console.log(document.body.lastChild.previousSibling.previousEl

ementSibling);

Document Object Model (DOM) | FITPED

101

// h1 element

In order to access the parent node of the specified node, use
the parentNode property, which returns a Node object.

console.log(document.body.firstChild.parentNode);

// body

The parentElement property returns the parent element of the specified element.

📝 8.3.6

Let's have the following code:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 </body>

</html>

Which of the following methods return the <h1> element?

• document.firstChild
• document.firstElementChild
• document.firstChild.nextElementSibling
• document.lastChild.previousElementSibling
• document.parentNode

🕮 8.3.7

To find elements in the DOM tree, you can use identifiers like a tag name, ID
attribute, and class name.

Basic HTML tag structures for these cases are:

<tagname id="{id attribute}" class="{class(es)

name(s)}">...</tagname>

<p class="head" id="mainhead"></p>

Let's have the following HTML structure:

<!DOCTYPE html>

Document Object Model (DOM) | FITPED

102

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1 id="main-title">Sample header</h1>

 <p class="lead">A sample lead</p>

 <p>A sample paragraph</p>

 </body>

</html>

The method getElementById({id}) returns the element that has the ID attribute with
the provided value. The method returns an Elementobject that represents an
element with the specified ID, null if no elements with the specified ID exists.

document.getElementById('main-title'); // h1 element

document.getElementById('lead'); // null

The method getElementsByTagName({tag name}) returns a collection of all
elements in the document with the specified tag name, as a NodeList object.

document.getElementsByTagName('p'); // [p element, p element]

document.getElementsByTagName('h2'); // [], an empty

collection

To find all elements that have a specified class name, use
the getElementsByClassName({class name}) method. It returns a collection of
elements as a NodeList object.

document.getElementsByClassName('lead'); // [p element]

document.getElementsByClassName('footer'); // [], an empty

collection

The last method is getElementsByName({name}), which return a collection of all
elements in the document with the specified name (the name attribute).

📝 8.3.8

Let's have the following code:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <p id="xyz" class="abc">Fitped</p>

 <div class="abc">Fitped</div>

Document Object Model (DOM) | FITPED

103

 <p name="xyz" class="abc">Fitped</p>

 </body>

</html>

Which of the following methods will you use to get all elements with text "Fitped"?

• document.getElementById()
• document.getElementsByClassName()
• document.getElementsByName()

🕮 8.3.9

You can use CSS selectors to find elements in the DOM tree with the
methods querySelector({css selector}) and querySelectorAll({css selector}). In
general, CSS selectors are patterns used to select elements you want to style (in
CSS).

The querySelector({css selector}) method returns the first element that matches a
specified CSS selector(s) in the document, whereas the querySelectorAll({css
selector}) method returns all the matches.

Let's look at the following example:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1 id="main-title">Sample header</h1>

 <p class="lead">A sample lead</p>

 <p>A sample paragraph</p>

 </body>

</html>

document.querySelector('p'); // p element

document.querySelector('h1'); // h1 element

document.querySelector('h2'); // null

document.querySelector('#main-title'); // h1 element

document.querySelector('.lead'); // p element

document.querySelectorAll('p'); // [p element, p element]

document.querySelectorAll('h1'); // [h1 element]

document.querySelectorAll('h2'); // []

document.querySelectorAll('#main-title'); // [h1 element]

document.querySelectorAll('.lead'); // [p element]

📝 8.3.10

Document Object Model (DOM) | FITPED

104

You should use document.querySelector({css selector}) method to get all elements
that match the specified selector.

• False
• True

🕮 8.3.11

The last way of accessing elements in the DOM tree is using pre-defined
collections, which are properties of the document object.

We have already mentioned the document.body property, which returns
the <body> element. Respectively, the document.head property returns
the <head> element.

The document.documentElement property returns the <html> element and
the document.title property returns the <title> element.

The document.anchors property returns all <a> elements that have a name
attribute.

The document.forms property returns all <form> elements.

The document.images property returns all elements.

The document.links property returns a collection of all links in the document.

The document.scripts property returns all <script> elements.

📝 8.3.12

Fill the gap in the following statement:

Use the document._____ property to get access to the <head> element.

8.4 Substitution and elimination of elements

🕮 8.4.1

Document Object Model (DOM) | FITPED

105

To replace an element with another use the parent.replaceChild({new element}, {old
element}) method. The new node could be an existing node in the document, or you
can create a new node.

var h = document.createElement("h1");

document.body.appendChild(h);

var p = document.createElement("p");

document.body.replaceChild(p, h); // replaces the existing

element

The above code should produce the following HTML structure:

<p></p>

📝 8.4.2

Complete the code to achieve this replacement of Header 1 by Header 3:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var ha = document.createElement("h1");

 var ta = document.createTextNode("Main header");

 ha.appendChild(ta);

 var hb = document.createElement("h2");

 var tb = document.createTextNode("Header2");

 hb.appendChild(tb);

 document.body.appendChild(ha);

 document.body.appendChild(hb);

 var hc = document._____("h3");

 var tc = document._____("Header3");

 _____._____(tc);

 _____._____._____(_____, _____);

 </script>

 </body>

</html>

• hb
• document
• hc
• appendChild
• hc
• createElement

Document Object Model (DOM) | FITPED

106

• body
• hb
• ha
• ha
• hc
• createTextNode
• appendChild
• replaceChild
• createElement

🕮 8.4.3

An existing element can be removed from the DOM in two ways:

• the element.remove() method,
• the parent.removeChild({element}) method.

var p = document.createElement("p");

document.body.appendChild(p);

p.remove();

document.body.removeChild(p); // does the same as the remove()

method from previous line

The element.remove() method returns nothing but it removes the object from
memory. The parent.removeChild({element}) method returns the removed node
or null if the node does not exist, but it does not remove the object.

📝 8.4.4

The element.remove() keeps an object in memory.

• False
• True

📝 8.4.5

The element.removeChild({child}) keeps an object in memory.

• True
• False

Manipulation with Elements

Chapter 9

Manipulation with Elements | FITPED

108

9.1 Changing element style

🕮 9.1.1

To change the style of an HTML element, use the following syntax:

element.style.property = new style

Where the property is one of the CSS properties, e.g. backgroundColor. All CSS
properties with a dash, like font-family, text-align, border-top-width, etc. are
represented in the camel-case form, i.e. fontFamily, textAlign, borderTopWidth, and
so on.

📝 9.1.2

Is it possible to change the content or properties of objects placed in DOM?

• yes
• no

🕮 9.1.3

Let's have the following document:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p id="par">Fitped</p>

 </body>

</html>

The code below should change the color of the paragraph text as well as its font
size.

document.getElementById('par').style.color = 'red';

document.getElementById('par').style.fontSize = '18px';

📝 9.1.4

Let's have the following document:

Manipulation with Elements | FITPED

109

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p id="ppp">Fitped</p>

 </body>

</html>

Fill the gaps to change the color of the paragraph text to green.

document.getElementById('_____')._____._____ = 'green';

🕮 9.1.5

The computed style is the style actually used for displaying the element, i.e. the
values of CSS properties, which are set based on multiple sources, like internal style
sheets, external style sheets, inherited styles and browser default styles.

To get the computed style object (i.e. an object containing the values of all CSS
properties of the element) use the window.getComputedStyle({element}) method.

Let's have the following HTML code:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p style="color: blue;">Fitped</p>

 </body>

</html>

The script below should display a value of the color property.

let style =

window.getComputedStyle(document.querySelector('p'));

console.log(style.color); // blue

📝 9.1.6

Fill the gap to set the font color of heading to the same color as paragraph text:

<!DOCTYPE html>

<html>

 <head><title></title></head>

Manipulation with Elements | FITPED

110

 <body>

 <p id="para" style="color: blue; background-

color:red">Fitped</p>

 <h1 id="main-title">Heading1</h1>

 <script>

 let _style =

window.getComputedStyle(document._____('p'));

 hd = document._____('main-title');

 hd.innerText = 'Changed heading';

 hd.style._____ = _____.color;

 </script>

 </body>

</html>

• color
• color
• style
• backgroud-color
• getElementById
• getStyle
• _style
• querySelector
• getElementByTag

🕮 9.1.7

The second method of changing HTML style is modifying the value of the
element's class attribute.

To change a class, the className property can be used. The property sets or
returns the class name of an element (the value of an element's class attribute).

<p class="lead">Fitped</p>

<h1 class="main-header black-version">Fitped</h1>

console.log(document.querySelector('p').className); // lead

console.log(document.querySelector('h1').className); // main-

header black-version

document.querySelector('h1').className = 'second-header';

console.log(document.querySelector('h1').className); //

second-header

Manipulation with Elements | FITPED

111

📝 9.1.8

Which of the following piece of code is the correct way of changing style?

• document.getElementById("a").style.backgroundColor = 'red';
• document.getElementById("a").style.background-color = 'red';
• document.getElementById("a").css.backgroundColor = 'red';
• document.getElementById("a").styleSheet.backgroundColor = 'red'

📝 9.1.9

In order to get the computed style object, you should use the
window._____({element}) method.

📝 9.1.10

Which of the following piece of code is correct?

• document.getElementById("a").classname
• document.getElementById("a").class-name
• document.getElementById("a").className
• document.getElementById("a").classNames

🕮 9.1.11

Similar to className is the classList property. This property is useful to add,
remove and toggle CSS classes on an element.

<h1 class="main-header black-version">Fitped</h1>

To get the number of CSS classes of an element's class attribute, use
the element.classList.length property.

console.log(document.querySelector('h1').classList.length); //

2

To add a new class to a specified element, use the element.classList.add({class1},
{class2}, ...) method.

document.querySelector('h1').classList.add('c1');

document.querySelector('h1').classList.add('c2', 'c3');

Manipulation with Elements | FITPED

112

console.log(document.querySelector('h1').className); // main-

header black-version c1 c2 c3

The element.classList.contains({class}) method returns a boolean value, indicating
whether an element has the specified class name or not.

console.log(document.querySelector('h1').contains('c1')); //

true

console.log(document.querySelector('h1').contains('c4')); //

false

The element.classList.item({index}) method returns the class name with a specified
index number from an element. Index starts at 0. Returns null if the index is out of
range.

console.log(document.querySelector('h1').item(0)); // main-

header

console.log(document.querySelector('h1').item(1)); // black-

version

console.log(document.querySelector('h1').item(5)); // null

The element.classList.toggle({class}) method toggles between a class name for an
element.

console.log(document.querySelector('h1').toggle('c2')); //

false

console.log(document.querySelector('h1').className); // main-

header black-version c1 c3

console.log(document.querySelector('h1').toggle('c2')); //

true

console.log(document.querySelector('h1').className); // main-

header black-version c1 c3 c2

📝 9.1.12

Let's have the following HTML and JS code:

<p class="a b c"></p>

document.querySelector('p').classList.add('d');

After the execution, the class name of the <p> will be equal to:

• a b c
• a d b c
• a b d c

Manipulation with Elements | FITPED

113

• a b c d

📝 9.1.13

Let's have the following HTML and JS code:

<p class="a b c"></p>

document.querySelector('p').classList.toggle('b');

After the execution, the class name of the <p> will be equal to:

• a c
• a c b
• a b c
• a

9.2 innerHTML

🕮 9.2.1

Property innerHTML is used for changing the HTML structure dynamically. It can be
used with every HTML DOM element.

In order to get a string that represents the HTML content of an element use the
following syntax:

element.innerHTML

Set the innerHTML property:

element.innerHTML = "<p>Lorem ipsum...</p>"

📝 9.2.2

Which of the following piece of code is correct?

• document.getElementById("a").innerHtml
• document.getElementById("a").innerHTML
• document.getElementById("a").innerhtml
• document.getElementById("a").inner_html

Manipulation with Elements | FITPED

114

🕮 9.2.3

Let's assume the following HTML code:

<div id="a"> <p id="b"> c </p> </div>

In the first example, the content of the div element and p element is retrieved:

console.log(document.getElementById("b").innerHTML); // c

console.log(document.getElementById("a").innerHTML); // <p

id="b">c</p>

After applying the following code:

document.getElementById("b").innerHTML = "d";

The resulting structure will be as follow:

<div id="a"> <p id="b"> d </p> </div>

You can remove all children elements in this way as well. If you apply the next code:

document.getElementById("a").innerHTML = "";

The result will be as follow:

<div id="a"></div>

📝 9.2.4

Assume that, you have the following code:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body></body>

</html>

Fill the gap, in order to get the following result:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body><p></p></body>

</html>

document.body.innerHTML = '_____';

Manipulation with Elements | FITPED

115

📝 9.2.5

Which of the following piece of code removes all children elements in
the <body> element?

• document.body.innerHTML = '';
• document.body.innerHtml = '';
• document.querySelector('.body').innerHTML = '';
• document.getElementById('body').innerHTML = '';

Event-driven Programming

Chapter 10

Event-driven Programming | FITPED

117

10.1 Event-driven programming

🕮 10.1.1

Event-driven programming is a programming paradigm in which the flow of the
program is determined by events, like mouse clicks, key-presses, time events, and
so on.

An event handler is a function that is called when a particular event occurs. The
event handler gets an event object as an argument. The event object has properties
and methods related to the raised event, e.g., information about which mouse
button was pressed when the mouse event was triggered.

HTML DOM events allow JavaScript to register different event handlers on
elements in an HTML document. Each event is limited to the certain HTML
elements, e.g. the onload event has the following supported HTML tags: <body>,
<frame>, <iframe>, , <input type="image">, <link>, <script> and <style>.

📝 10.1.2

What is event-driven programming?

• programming paradigm where the program is controlled by events like
mouse-click, key-press etc.

• library (of functions) supporting identification and processing of events like
mouse-click, key-press etc.

• part of DOM focused on the processing of special types of events at DOM
elements

🕮 10.1.3

The onclick attribute can be used to attach an event handler to the element.

Let's have the following function:

function clicked() {

 console.log('Clicked!');

}

Now, we will attach the function to the <button> element by putting some
JavaScript code into the onclick attribute.

<button onclick="clicked()">Click me!</button>

Event-driven Programming | FITPED

118

The clicked() function will be called a reaction for clicking the button.

In general, JavaScript code is allowed to be added to HTML elements through event
handler attributes.

<element event="some JavaScript">

Hence, the same effect as in the above example can be achieved with the following
code:

<button onclick="console.log('Clicked!')">Click me!</button>

📝 10.1.4

Fill the gap to call function clicked() after click to defined button.

<button _____="_____()">Click me!</button>

🕮 10.1.5

The most common events are mouse events.

The onclick event occurs when the user clicks on an element, whereas
the oncontextmenu event occurs when the user right-clicks on an element to open
a context menu.

Lastly, the ondblclick event occurs when the user double-clicks on an element.

The onmousedown event occurs when the user presses a mouse button over an
element, and the onmouseup event occurs when a user releases a mouse button
over an element.

The last group of events is related to the movement of a mouse cursor.
The onmouseenter event occurs when the pointer is moved onto an element, and
respectively, the onmouseleave event occurs when the pointer is moved out of an
element. The onmousemove event occurs when the pointer is moving while it is
over an element. The onmouseover event occurs when the pointer is moved onto
an element, or onto one of its children.

📝 10.1.6

Choose correct mouse event:

simple click - _____

Event-driven Programming | FITPED

119

right-click - _____

pressed mouse button - _____

released mouse button - _____

the mouse pointer is moved onto an element - _____

the mouse pointer is moving over an element - _____

• onmouseright
• onmouseclick
• onmousedown
• onclick
• onmousemove
• onmouseup
• onmouseenter
• onmousechar
• onmousepress
• oncontextmenu

🕮 10.1.7

As an argument, an event handler function will receive the MouseEvent object,
which provides properties and methods describing mouse interactions.

function mouseEventHandler(event) {

 if (event.button == 0) {

 console.log('Left mouse button clicked!');

 } else if (event.button == 1) {

 console.log('Middle mouse button clicked!');

 } else if (event.button == 2) {

 console.log('Right mouse button clicked!');

 }

}

<button onmousedown="mouseEventHandler(event)">Click

me!</button>

As you can see in the above example, you have to pass the event object into the
event handler.

Event-driven Programming | FITPED

120

📝 10.1.8

Fill the gaps:

function mouseEventHandler(_____) {

 if (event.button == 0) {

 console.log('_____ mouse button clicked!');

 } else if (event.button == 1) {

 console.log('Middle mouse button clicked!');

 } else if (event.button == 2) {

 console.log('_____ mouse button clicked!');

 }

}

<button onmousedown="mouseEventHandler(_____)">Click

me!</button>

• Left
• event
• event
• eventHandler
• Right

📝 10.1.9

Assume that the message should be shown after a mouse double-click, fill the gap
with the right event name.

<button _____="showMessage())">Click me!</button>

10.2 More event types

🕮 10.2.1

The next popular group of events is keyboards events. The onkeydown event
occurs when the user is pressing a key, and respectively, the onkeyup event occurs
when the user releases a key. The onkeypress event occurs when the user presses
a key.

As an argument, an event handler function will receive the KeyboardEvent object,
which provides properties and methods describing keyboard interactions.

function keyboardEventHandler(event) {

Event-driven Programming | FITPED

121

 console.log(event.key); // a single character (like "a",

"4" or "$") or a multicharacter (like "F1" or "Enter")

}

<input onkeydown="keyboardEventHandler(event)" type="text" />

📝 10.2.2

Assume that the message should be shown after a key is pressed (generating a
char), fill the gap with the right event name.

<input _____="showMessage()" />

🕮 10.2.3

Events that are triggered by the user interface belongs to the UI events group.

The onload event occurs when an object has loaded.

The onresize event occurs when the document view is resized.

The onscroll event occurs when an element's scrollbar is being scrolled.

📝 10.2.4

Choose a correct event:

The _____ event occurs when an object has loaded.

The _____ event occurs when the document view is resized.

The _____ event occurs when an element's scrollbar is being scrolled.

• onresize
• onscroll
• onmove
• onsizechange
• ondrag
• onshift
• onload

Event-driven Programming | FITPED

122

🕮 10.2.5

So far, we have used the combination of an HTML element event attribute and a
JavaScript function. Now, we attach an event handler with JavaScript only, see the
below syntax:

element.onload = function(event) { ... };

The above code attaches a single event handler to an element without an HTML
attribute. See the below examples:

document.body.onload = function () {

 console.log('The page is loaded.');

};

document.querySelector('p').onclick = function () {

 console.log('The paragraph was clicked.');

};

📝 10.2.6

Fill in the space and set the response to clicking on the paragraph:

document.querySelector('p')._____ = _____ () {

 console.log('The paragraph was clicked.');

};

• func
• onclicked
• clicking
• onClicked
• function
• funct
• onclick

🕮 10.2.7

JavaScript allows the execution of code at specified time intervals. These time
intervals are called timing events. The two key methods to use with JavaScript are:

• The setTimeout({function}, {milliseconds}) method executes a function, after
waiting a specified number of milliseconds.

• The setInterval({function}, {milliseconds}) method, same as setTimeout(), but
repeats the execution of the function continuously.

Event-driven Programming | FITPED

123

The clearTimeout() method stops the execution of the function specified in
the setTimeout() method.

let timer = setTimeout(function () {}, 1000);

clearTimeout(timer);

The clearInterval() method stops the executions of the function specified in
the setInterval() method.

let timer = setInterval(function () {}, 1000);

clearInterval(timer);

📝 10.2.8

Is it true?

The setTimeout method repeats the execution of the event handler function
continuously.

• False
• True

10.3 Event handlers

🕮 10.3.1

You can add multiple event handlers with the element.addEventListener({event},
{function}, {useCapture}). The method takes three arguments:

• the required event that specifies the name of the event;
• the required function that specifies the function to run when the event

occurs;
• optional useCapture, a Boolean value that specifies whether the event should

be executed in the capturing or in the bubbling phase (this will be explained
in the next card).

The following code presents exemplary usage of the addEventListener method:

let btn = document.querySelector('button');

btn.addEventListener('click', function(e) {

 console.log('First mesage');

});

Event-driven Programming | FITPED

124

btn.addEventListener('click', function(e) {

 console.log('Second message');

});

After clicking on the button, two messages should be displayed.

Do not use the on the prefix in event names. For example, use click instead
of onclick.

📝 10.3.2

Is it possible to use the addEventListener method to attach multiple event handlers
to the same element?

• yes
• no

🕮 10.3.3

Suppose you have assigned a click event handler on a <a> element, which is nested
inside a <p> element. Now, if you click on that link, the handler will be executed. But,
instead of the link, if you assign the click event handler to the paragraph containing
the link, then even in this case, clicking the link will still trigger the handler. That's
because events don't just affect the target element - they travel up and down
through the DOM tree to reach their target. This is known as event propagation.

Event propagation is a mechanism that defines how events propagate or travel
through the DOM tree to arrives at their target and what happens to it afterwards.
Event propagation proceeds in three phases: capturing, bubbling, and target phase.
Take a look at the following illustration:

Event-driven Programming | FITPED

125

Source: Medium: Event Bubbling and Event Capturing in JavaScript.

Event bubbling is the event that starts from the deepest element or target element
to its parents, then all its ancestors which are on the way from the bottom to top ,
whereas event capturing is the event that starts from the top element to the target
element. Modern browsers do not support event capturing by default, but you can
turn it on with the previously mentioned useCapture argument. The target phase is
when the event reached the target element.

See the example below:

<html>

 <head><title></title></head>

 <body>

 <p><button></button></p>

 </body>

</html>

document.querySelector('p').addEventListener('click', function

(event) {

 console.log('Second message');

});

document.querySelector('button').addEventListener('click',

function (event) {

 console.log('First message');

Event-driven Programming | FITPED

126

});

In the example above, after clicking on the button, both messages will be displayed.

📝 10.3.4

What numbers are written after clicking on the image?

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p></p>

 <script>

 document.querySelector('p').addEventListener('click',

function (event) {

 console.log('10');

 });

 document.querySelector('img').addEventListener('click',

function (event) {

 console.log('20');

 });

 </script>

 </body>

</html>

• 20, 10
• 10, 20
• 10
• 20
• nothing

🕮 10.3.5

If you want to stop the event bubbling, use the event.stopPropagation() method.
See the example below:

<html>

 <head><title></title></head>

 <body>

 <p><button></button></p>

 </body>

Event-driven Programming | FITPED

127

</html>

document.querySelector('p').addEventListener('click', fucntion

(event) {

 console.log('Second message');

});

document.querySelector('button').addEventListener('click',

fucntion (event) {

 console.log('First message');

 event.stopPropagation();

});

In the example above, after clicking on the button, the first message will be
displayed only.

You can use event.stopImmediatePropagation() to stop event propagation as well.
The difference is that this method will also stop the rest of the attached event
handlers from being executed.

📝 10.3.6

Use the event.stopPropagation() method to prevent attached event handlers from
being executed.

• False
• True

🕮 10.3.7

The element.removeEventListener({event}, {function}, {useCapture}) method
removes an event handler that has been attached to the element. The arguments of
the method are the same as in the addEventListener method. To remove event
handlers, the function specified with the addEventListener method must be an
external, named function, see the example below:

function clicked(event) {

 console.log('Clicked!');

}

document.querySelector('button').addEventListener('click',

clicked);

document.querySelector('button').removeEventListener('click',

clicked); // removes the event handler

Event-driven Programming | FITPED

128

If the event handler was attached two times, one with capturing and one bubbling,
each must be removed separately.

📝 10.3.8

Fill the gap to remove event listener:

document.querySelector('button').addEventListener('click',

clicked);

document.querySelector('button')._____('click', clicked);

• removeEventListener
• deleteListener
• deleteEventListener
• removeListener

🕮 10.3.9

The event.preventDefault() method cancels the event if it is cancelable, meaning
that the default action that belongs to the event will not occur. For example, clicking
on a Submit button, prevent it from submitting a form or clicking on a link, prevent
the link from following the URL. Not all events are cancelable. Use
the cancelable property to find out if an event is cancelable.

document.querySelector('a').addEventListener('click', function

(event) {

 event.preventDefault();

});

📝 10.3.10

Use the event._____() to cancel the default action of an element.

🕮 10.3.11

You can use the CustomEvent({eventName}, {detail}) for creating custom events.
The eventName represents the name of the event. The detail argument is optional,
and it is an event-dependent value associated with the event. See the example
below:

Event-driven Programming | FITPED

129

let event = new CustomEvent('customEvent', {

 detail: {

 message: 'Fitped'

 }

});

You can attach the event name to an element.

document.querySelector('a').addEventListener('customEvent',

function (event) {

 console.log(event.detail.message);

});

To trigger the event, use the following code:

document.querySelector('a').dispatchEvent(event); // should

display the Fitped message

You can also trigger standard events like click or load, with the Event. See the
example below:

const event = new Event('click');

document.querySelector('button').dispatchEvent(event);

📝 10.3.12

Use the _____ to create custom events.

