

Erasmus+ FITPED-AI
Future IT Professionals Education in Artificial Intelligence
(Project 2021-1-SK01-KA220-HED-000032095)

Machine Learning

Jozef Kapusta
Ján Skalka
František Dařena
Kitti Szabó-Nagy
Małgorzata Przybyła-Kasperek
Vladimiras Dolgopolovas
Michal Munk
Lívia Kelebercová

www.fitped.eu 2024

Machine Learning

Published on

November 2024

Authors

Jozef Kapusta | Teacher.sk, Slovakia

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

František Dařena | Mendel University in Brno, Czech Republic

Kitti Szabó-Nagy | Constantine the Philosopher University in Nitra, Slovakia

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Vladimiras Dolgopolovas | Vilnius University, Lithuania

Michal Munk | Constantine the Philosopher University in Nitra, Slovakia

Lívia Kelebercová | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Piet Kommers | Helix5, Netherland

Vaida Masiulionytė-Dagienė | Vilnius University, Lithuania

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2024 Constantine the Philosopher University in Nitra

ISBN 978-80-558-2228-0

TABLE OF CONTENTS
1 Introduction .. 6

1.1 Introduction ... 7

1.2 What is machine learning? ... 10

1.3 Basic principles ... 16

2 Machine Learning Types ... 24

2.1 Machine learning types .. 25

2.2 Model evaluation .. 31

2.3 Practical examples ... 36

3 Classification ... 45

3.1 Classification .. 46

3.2 Taxonomy of classification models .. 50

4 Tree-based Learning .. 56

4.1 Decision trees ... 57

4.2 Greedy algorithm .. 62

4.3 Choosing the best properties .. 69

4.4 Performance metrics .. 75

4.5 Advanced metrics ... 82

4.6 Practical examples ... 89

5 Tree Construction .. 109

5.1 Overfitting .. 110

5.2 Tree building.. 117

5.3 Tree pruning .. 124

5.4 Missing (incomplete) data ... 134

5.5 Practical tasks .. 140

6 Metrics for Splitting Decisions ... 151

6.1 GINI index .. 152

6.2 Entropy ... 157

6.3 Information Gain ... 163

6.4 How to use numeral values? .. 167

6.5 Decission trees strengths and weaknesses ... 172

6.6 Practical tasks .. 174

Project: Regression decision tree .. 181

7 Random Forest... 189

7.1 Ensemble learning .. 190

7.2 Random forest .. 194

7.3 Other ensemble learning methods .. 201

7.4 Practical tasks .. 204

8 Regression .. 212

8.1 Regression ... 213

8.2 Linear regression I. ... 215

8.3 Linear regression II. .. 222

8.4 Advanced linear regression ... 233

8.5 Logistic regression ... 248

9 Clustering ... 258

9.1 K-means clustering ... 259

9.2 Normalisation.. 270

9.3 Cluster quality ... 279

9.4 Clustering algorithm types ... 292

10 Resources... 305

10.1 Bibliography .. 306

Introduction

Chapter 1

Introduction | FITPED AI

7

1.1 Introduction

🕮 1.1.1

Machine learning (ML) is a branch of artificial intelligence that allows computers to
learn from data and make decisions or predictions without being explicitly
programmed. It has become a crucial technology in many industries, from healthcare
and finance to entertainment and self-driving cars. At its core, machine learning
involves creating algorithms that can analyze and learn patterns from large datasets,
enabling systems to improve their performance over time. The goal is for machines
to recognize these patterns and use them to predict future outcomes or make
decisions on new, unseen data.

Machine learning models can be applied to a wide variety of tasks, including
classification, regression, clustering, and anomaly detection. For instance, in a
classification task, a machine learning model might be used to classify emails as
spam or not spam based on patterns it has learned from a training dataset. In a
regression task, the model might predict continuous values, such as stock prices or
the temperature for the next day, based on historical data.

To develop effective machine learning models, it’s important to understand the
underlying data and the methods used for training and evaluation. Data
preprocessing is a crucial step to clean and prepare the data for modeling, and model
evaluation metrics such as accuracy, precision, and recall are used to assess how
well the model performs. Understanding these concepts and techniques will lay the
foundation for exploring more advanced topics in machine learning.

📝 1.1.2

Which of the following is true about supervised learning in machine learning?

• It involves training models on labeled data with known outputs.
• It involves training models on data with no labeled outputs.
• It requires the use of reinforcement signals like rewards and penalties.
• It is used exclusively for predicting continuous values.

🕮 1.1.3

Can a machine learn new knowledge?

One of the core debates about artificial intelligence (AI) revolves around whether
machines can truly learn new knowledge and adapt to unfamiliar situations. Critics
argue that machines lack genuine intelligence because they operate within the

Introduction | FITPED AI

8

confines of predefined rules and instructions. If machines only perform tasks as
prescribed, can they be considered intelligent? This skepticism highlights the
importance of machine learning (ML), a subset of AI that equips systems with the
ability to learn and improve from experience.

Machine learning can be broadly defined as a process by which a system enhances
its performance over time based on experience. In 1983, Herbert A. Simon described
learning as "changes in a system that are adaptive in the sense that they allow the
system to accomplish the same task or tasks from the same class of tasks a second
time more efficiently and effectively." This adaptability enables machines to evolve
beyond their initial programming, becoming more competent at solving problems
and handling tasks over time.

Machine learning involves two key components: skill refinement and knowledge
acquisition. Skill refinement refers to a system's ability to improve its performance
in solving tasks by simply performing them repeatedly. For instance, a robot might
optimize its navigation through a maze after several attempts, gradually learning to
minimize errors and maximize efficiency. This process mirrors how humans refine
skills like playing a musical instrument or driving a car through practice.

Knowledge acquisition is the second vital element, wherein machines gather
knowledge through experience. This means that systems can analyze patterns,
recognize trends, and use the information they acquire to adapt their behavior or
make predictions. For example, a machine learning model trained on historical
weather data can "learn" to predict future weather conditions. This ability to adapt
and learn enables machines to tackle a wide ran.

📝 1.1.4

Which of the following statements are true about machine learning?

• It enables systems to improve their performance based on experience.
• Skill refinement involves improving task-solving by repetition.
• Machines acquire knowledge solely through explicit programming.
• Machine learning eliminates the need for data analysis.

🕮 1.1.5

Machine learning algorithms can solve the following groups of problems:

• A group of problems for which there are no human experts. For example, in
modern manufacturing facilities, it is necessary to predict machine failures
before they actually occur based on sensor analysis. Because the machines
are new, there is no expert to give the programmer in question all the

Introduction | FITPED AI

9

knowledge needed to create a computer system. A system built on machine
learning can study the recorded data and infer prediction rules for
subsequent machine failures.

• A group of problems where experts exist, but are unable to explain their
expertise. This is the case for many recognition tasks, such as speech
recognition, handwriting recognition, and natural language understanding. In
fact, all humans demonstrate expert ability to solve these tasks, but none of
them are able to describe in detail the steps they apply in solving them.
Fortunately, humans can provide machines with examples of inputs and
correct outputs for these tasks, so machine learning algorithms can learn to
map inputs to correct outputs.

• A group of problems where circumstances change rapidly. In finance, for
example, people would like to predict future stock market developments,
consumer purchases or currency exchange rates. This data changes quite
rapidly, so even if a programmer could create a good prediction program, it
would have to be rewritten frequently. A learning program can relieve the
programmer from constant modification and debugging by creating a set of
prediction rules learned by learning.

• A group of applications that must be configured for each user separately.
Consider, for example, a program for filtering unwanted e-mail. Each user will
need different filters. It is unreasonable to expect each user to define their
own rules, and it is also unfeasible to have a software engineer available to
each user to update their rules. A system using machine learning is able to
learn which emails a user rejects and thus maintain filtering rules
automatically.

📝 1.1.6

Which of the following is an example of a problem where machine learning is useful
because experts cannot fully explain their expertise?

• Speech recognition
• Predicting future stock market developments
• Filtering unwanted emails for individual users
• Predicting machine failures in new manufacturing facilities

📝 1.1.7

Which of the following are examples of problems where machine learning is
particularly beneficial?

• Predicting future stock market developments
• Filtering spam emails for individual users
• Solving simple arithmetic problems

Introduction | FITPED AI

10

• Predicting machine failures in new manufacturing facilities

1.2 What is machine learning?

🕮 1.2.1

What is learning?

To illustrate where the main advantages, but also the issues of machine learning lie,
we give an example, the so-called The Badges Game. The example was invented by
Haym Hirsh, who at a machine learning conference in 1994 assigned a "+" or "-" to
each registered participant. The label was assigned by some unknown function
known only to the creator of the example. The designation depended only on the first
and last name of the participant.

The task for the participants was to identify the unknown function used to generate
the +/- sign.

The list looked something like this:

For a full list, you can see:
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-
0/game.html

We do not need to build a machine learning model to solve this problem. However, it
is important to think about how we would formalize this problem as a learning
problem and what are the difficulties that arise in doing so.

When solving, it is important to remember that only the first and last names of the
participants will not be enough even for a machine learning algorithm. New variables
need to be generated from those names, e.g., the length of the full name, the length,
i.e., the number of characters of the first name and the last name, the first character

https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-0/game.html
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-0/game.html

Introduction | FITPED AI

11

of the first name and its numbered code, the last character of the last name and its
numbered code, the number of consonants, the number of vowels, and so on.

If we subsequently have the above mentioned variables - properties/attributes -
calculated, we can deploy a machine learning algorithm that learns to add +/- tags
for each name.

It is important to note that we do not need to know the exact function that Mr. Hirch
created. We only try to estimate it, i.e. we try to copy the results of this feature as
closely as possible. Mathematicians call this "good estimation" of the behaviour of a
function as approximation. The algorithm of machine learning will therefore seek to
approximate the function of Mr. Hirsh.

📝 1.2.2

What is a function for approximating values?

• It is the replacement of given values with appropriate close numbers based
on a function that is not entirely accurate, but it is still good to be usable.

• It is the replacement of given values with appropriate close numbers based
on a function that exactly corresponds to the substituted values.

🕮 1.2.3

In the previous example, we stated that machine learning only tries to approximate
the real function. We still don't know the original Hirsh function. For some names
from an existing dataset, it is possible to approximate the +/- marks using rules such
as:

• if the length (number of characters) of the name is less than or equal to 5
yes + otherwise -

Introduction | FITPED AI

12

or

• if the numerical code of the last letter of the name is smaller than the
numerical code of the last letter of the surname yes + otherwise -

📝 1.2.4

What was the main objective of participants in "The Badges Game" introduced by
Haym Hirsh?

• To identify the unknown function that assigned "+" or "-" to names
• To classify participants based on their field of research
• To guess the preferences of conference participants

Introduction | FITPED AI

13

• To evaluate the accuracy of machine learning models for sentiment analysis

🕮 1.2.5

The purpose of The Badges Game example was not to solve the problem with the
unknown function for adding +/- badges to conference participants. With an example,
we wanted to show that machine learning algorithms only try to approximate the real
function. At the same time, we wanted to show that working to solve a problem using
machine learning is not about "headlessly" deploying a randomly selected algorithm
and expecting excellent results. Most of the work consists in preparing the dataset,
adding new features, i.e. attributes, in carefully selecting a machine learning
algorithm, evaluating the algorithm, and understanding the results.

For the application of machine learning, it is necessary to implement the following
steps in most cases:

• Data preprocessing
• Extracting symptoms / features
• Creating a model
• Making a prediction
• Model testing and modification

Typical questions when applying machine learning are:

• How to represent input data?
• What deep background knowledge do we need?
• How does learning take place?

📝 1.2.6

What does "The Badges Game" illustrate about machine learning?

• Machine learning can approximate unknown functions.
• The exact function used in a dataset may remain unknown.
• Machine learning guarantees discovering the exact underlying rules.
• Machine learning involves handling complex real-world data.

Introduction | FITPED AI

14

🕮 1.2.7

So what is the difference between traditional programming and machine learning?

In traditional programming, we know the problem, we know the rules to solve it, and
if we apply these rules to the input data, we get the result.

In machine learning, we know the input data and we also know what the result should
be. We are looking for a model, i.e. for example rules, which can generally calculate
the result from the input data.

In the following text, we present examples of how machine learning can improve a
task based on experience (training data) with respect to a measure (metric) of
performance.

• Task: Checkers game
• Performance metric: Percentage of games won against any opponent
• Data: Playing practice games against each other

-- ----------------------------

• Task: Recognizing handwritten words
• Performance metric: Percentage of correctly classified words
• Data: Database of annotated images of handwritten words

-- ----------------------------

• Task: Categorizing email messages as spam or ham.
• Performance metric: Percentage of email messages correctly classified.
• Data: A database of emails that have been manually annotated

-- ----------------------------

• Task: Driving on highways using sensors
• Performance metric: Average distance traveled before human-judged error
• Data: A sequence of images and steering commands recorded while

observing a human driver.

Introduction | FITPED AI

15

📝 1.2.8

Which statements correctly describe the differences between traditional
programming and machine learning?

• In traditional programming, the rules to solve the problem are predefined.
• Machine learning uses input data and known results to find a model.
• Traditional programming relies on discovering rules from the data.
• Machine learning applies predefined rules to calculate results.

📝 1.2.9

Complete the appropriate procedure and source data for each task.

Task: Predicting house prices

Performance metric: _____

Data: _____

Task: Classifying medical images to detect tumors

Performance metric: _____

Data: _____

Task: Recommending movies based on user preferences

Performance metric: _____

Data: _____

• A set of medical images annotated with labels indicating the presence or
absence of tumors

• Percentage of recommended movies that the user watches
• A dataset of historical house prices, including features like location, size, and

number of rooms
• A database of user ratings for movies and movie genres
• Mean absolute error between predicted and actual prices
• Accuracy of correctly identifying tumors

Introduction | FITPED AI

16

📝 1.2.10

If we want to use machine learning to categorize which news belongs to fake news,
the so-called fake news, what input (data) and output (output) data do we need to
build such a classifier?

• A database of messages, along with information from manual annotators
(people judging the messages) about which message is fake and which is
genuine.

• Rules written by the state government by which institutions determine which
message is fake.

• A list of people compiled by the state government who spread false
information.

• Database of politicians who lie.

1.3 Basic principles

🕮 1.3.1

One of the most basic yet effective ways for a machine to acquire knowledge is by
memorizing data on how to perform tasks. This method enables the system to apply
this information to accomplish similar tasks more efficiently in the future. In machine
learning and artificial intelligence, this is often referred to as "swotting." By retaining
useful information, the system can perform tasks with improved accuracy and
effectiveness over time, akin to humans remembering steps or strategies for solving
problems.

A classic example of swotting can be found in Samuel's checkers-playing program
developed in 1963. Samuel utilized a technique called the mini-max search, which
explores possible moves in a game tree to select the optimal play. However, due to
computational limitations, only a few levels of the game space could be explored in
each turn. To make the search process more efficient, a static evaluation function
was used to evaluate the quality of each move based on its position in the game.
This evaluation was then remembered by the system for future reference.

The power of swotting in Samuel's checkers program came into play when the
system encountered previously explored positions during future searches. When the
search encountered a node that had been previously evaluated, the system could
immediately use the memorized evaluation rather than recalculating the evaluation
from scratch. This approach saved computational resources and increased the
overall efficiency of the search process. The ability to recall past evaluations allowed
the program to simulate a deeper search than it would have been able to achieve by
recalculating everything from the beginning. In this way, the system "learned" to
improve its decision-making process based on past experiences.

Introduction | FITPED AI

17

The swotting method exemplifies how memory and the ability to recall information
can significantly enhance problem-solving in AI systems. By remembering prior
evaluations or strategies, systems can avoid redundant calculations and focus on
refining their performance.

📝 1.3.2

Which of the following statements best describes the swotting method?

• It involves storing previous evaluations to enhance future decision-making.
• It relies solely on random moves to perform tasks efficiently.
• It uses a fixed set of rules without considering past experiences.
• It eliminates the need for static evaluation functions in machine learning.

🕮 1.3.3

In machine learning, the process of evaluation is a crucial component of decision-
making algorithms, especially in games like checkers or in pattern recognition tasks.
One effective way to evaluate different possible outcomes is through the evaluation
function, which takes into account several factors relevant to the task.

In checkers, for example, the evaluation function is often constructed by combining
information from multiple sources. The programs take into account several factors,
e.g., the advantage in the number of stones, or the mobility of the stones when
playing checkers.

Samuel, in his checkers-playing program, used an evaluation function in the form of
a polynomial that considered different features of the game state. Each feature—
such as the number of pieces or their mobility—was weighted and combined to
produce a final score for the board's position. By adjusting these weights, the system
could refine its ability to evaluate different positions more accurately. The strength
of this approach is that it simplifies a complex task into measurable components,
which can be adjusted based on experience.

in and +in1122 +... and+in and innn

Similarly, in pattern recognition programs, which aim to classify input data into
categories, the process of evaluating the importance of different features becomes
essential. When building these types of systems, it is often challenging to know the
exact weight to assign to each feature in advance. In such cases, an initial estimate
of the weights can be used, and over time, the system can adjust these weights based
on the feedback it receives. Features that are more strongly correlated with a
successful outcome will increase in weight, while features that do not contribute as
effectively will have their weights reduced or ignored altogether.

Introduction | FITPED AI

18

This process of adjusting weights and parameters over time is known as learning by
adapting parameters. It's a fundamental concept in machine learning, as it allows the
system to evolve and improve its decision-making ability based on past experiences.
Whether evaluating board positions in a game or recognizing patterns in data,
learning by adapting parameters enables the system to better handle complex tasks
by refining its internal models based on new data.

📝 1.3.4

Which of the following are examples of learning by adapting parameters?

• Adjusting weights based on experience to improve the accuracy of
classification tasks.

• Combining multiple features into a single evaluation function for decision-
making.

• Using a fixed set of parameters without any updates or adjustments.
• Allowing a machine to memorize tasks without altering internal parameters.

🕮 1.3.5

In machine learning, one important aspect of improving a system’s performance is
adjusting the weights of different features or attributes. This process is known as
learning by adapting parameters, and it is a key concept in many algorithms,
including those used in game-playing programs and pattern recognition systems.

To design a method for adapting parameters, three things are crucial:

1. Which weight to adjust deciding which features or attributes should have
their weights increased or decreased is the first step in improving the
system.

2. When to change the weight - the system needs to determine the appropriate
time to update the weights, which often depends on feedback from the
results of predictions or decisions made.

3. How much to change the weight means amount by which the weight should
be changed is often determined by how accurate or inaccurate the prediction
was.

For example, when classifying patterns, the system will receive information about
whether the classification was correct or incorrect. If the classification was correct,
the system will increase the weights of the features that helped make that correct
decision. On the other hand, if the classification was incorrect, the system will
decrease the weights of the features that led to the wrong decision.

Introduction | FITPED AI

19

This is more complicated with gaming programs. At most, the program gets
information at the end about who won. However, many moves contributed to the final
result, of which several could have been erroneous. For example, Samuel took an
approach where the evaluation function generates its own feedback. It was based on
the consideration that the sequences of steps that lead to better positions can be
considered good. The weights of the attributes that recommended them will
increase.

Samuel's program was also taught by playing against itself, i.e. one copy of it played
with unchanging weights and the other copy had the weights changed. At the end of
the game, the attributes of the program that won were taken. The process of learning
by adapting parameters is limited in nature, since it does not make any use of
knowledge about the structure of the problem.

📝 1.3.6

Which of the following is a key aspect of learning by adapting parameters?

• The system adjusts weights based on feedback from the final outcome of a
game or task.

• The system changes its weights only after receiving detailed information
about every individual action.

• The system uses fixed weights that are never updated.
• The system doesn't use any feedback to improve its performance.

🕮 1.3.7

Setting weights

In machine learning, when you're training a model to classify data, it is essential to
assign weights to different features that will influence the final prediction. These
weights help the model determine the importance of each feature in making accurate
predictions. Let's consider a classification problem where we need to classify emails
as either spam or not spam. We will use a set of features such as the frequency of
certain words, the sender's email address, and the presence of links in the email.

For this example, let’s assume we have the following features:

1. Frequency of the word "free"
2. Number of links in the email
3. Sender is from a known domain (e.g., gmail.com)
4. Email length

Introduction | FITPED AI

20

We also have a training dataset where emails have already been labeled as spam or
not spam.

1. Initializing weights

Initially, each feature will have an equal weight. This means that the model treats all
features as equally important when making a prediction. In this case, each feature
might have a weight of 0.25 (since there are 4 features). This is a starting point, and
the weights will be updated as the model learns from the data.

2. Evaluating a sample email

Let’s now take a sample email and see how the system would apply the weights. For
example, the email might contain:

• 3 occurrences of the word "free"
• 5 links
• The sender is from a known domain (gmail.com)
• The email length is 150 words

Let’s calculate the initial prediction score using the weights:

• Word "free" - frequency = 3, weight = 0.25 → score = 3 * 0.25 = 0.75
• Links - number of links = 5, weight = 0.25 → score = 5 * 0.25 = 1.25
• Sender from a known domain - yes = 1, weight = 0.25 → score = 1 * 0.25 =

0.25
• Email length - length = 150 words, weight = 0.25 → score = 150 * 0.25 = 37.5

3. Summing the scores

The total score for this email would be the sum of all individual scores:

• Total score = 0.75 + 1.25 + 0.25 + 37.5 = 39.75

4. Adjusting the weights

After making an initial prediction based on the weights, the system compares the
prediction to the actual label (whether the email was actually spam or not). If the
model predicted the email to be spam correctly, it will increase the weights of the
features that contributed to the correct prediction. For example:

• Word "free" - the word "free" is a strong indicator of spam, so we might
increase its weight from 0.25 to 0.5.

• Links - since emails with more links are likely to be spam, we increase the
weight of the links feature from 0.25 to 0.4.

Introduction | FITPED AI

21

• Sender from a known domain - if the sender is from a trusted domain, it
might indicate that the email is not spam, so we reduce the weight of this
feature from 0.25 to 0.2.

• Email length - if longer emails are not strong indicators of spam, we leave
the weight for email length unchanged at 0.25.

After adjusting the weights based on the prediction and feedback, the system will be
able to make more accurate predictions in the future.

5. Learning over time

As the model receives more feedback on its predictions (correct or incorrect), it will
continue to adjust the weights of the features. This process, known as learning by
adapting parameters, allows the model to gradually improve its accuracy over time.
The weights become more reflective of the true importance of each feature in
classifying emails as spam or not spam.

📝 1.3.8

Which of the following is true when adapting weights in a machine learning model
for classification?

• The model adjusts the weights based on the feedback it receives about its
predictions.

• The model adjusts the weights based on the feedback it receives about its
predictions.

• The model always keeps the weights the same for all features.
• Features that are more relevant to the prediction will have higher weights.

🕮 1.3.9

Let’s consider an example from medical diagnosis, where we need to classify
patients as either high risk or low risk for a certain disease based on multiple factors.

We will use a set of features such as:

1. Age of the patient
2. Blood pressure level
3. Cholesterol level
4. Exercise frequency

Introduction | FITPED AI

22

We also have a training dataset with labeled instances indicating whether a patient
is high risk or low risk.

1. Initializing weights

Initially, we assign equal weights to all features. For simplicity, let’s assume that we
have 4 features, and each one has an initial weight of 0.25. This means that the
model considers all features as equally important when making its decision.

2. Evaluating a sample patient

Let’s now take a sample patient with the following attributes:

• Age: 55 years
• Blood pressure: 150/90 (high)
• Cholesterol level: 230 (high)
• Exercise frequency: 1 time per week

We will calculate the prediction score using the weights for each feature:

• Age - 55 years, weight = 0.25 → score = 55 * 0.25 = 13.75
• Blood pressure - 150/90, weight = 0.25 → score = 1 * 0.25 = 0.25 (since high

blood pressure is a risk factor)
• Cholesterol level - 230, weight = 0.25 → score = 1 * 0.25 = 0.25 (since high

cholesterol is a risk factor)
• Exercise frequency - 1 time per week, weight = 0.25 → score = 1 * 0.25 = 0.25

(exercise is a protective factor)

3. Summing the scores

The total score for this patient would be:

• Total score = 13.75 + 0.25 + 0.25 + 0.25 = 14.5

4. Adjusting the weights

After receiving the actual diagnosis (high risk), the system will adjust the weights of
the features based on how well they predicted the result. Let’s say the system
receives feedback that the model made a correct prediction. The weights will be
updated to reflect the importance of certain features:

• Age - as older patients tend to be at a higher risk, the weight of age might be
increased from 0.25 to 0.4.

• Blood pressure - since high blood pressure is a strong risk factor, the weight
for blood pressure could be increased from 0.25 to 0.35.

Introduction | FITPED AI

23

• Cholesterol level - high cholesterol is also a risk factor, so the weight for
cholesterol might remain the same, or increase slightly from 0.25 to 0.3.

• Exercise frequency - exercise frequency is a protective factor, so the weight
for exercise frequency might be decreased from 0.25 to 0.2.

5. Learning over time

As the model continues to process more patient data and receives feedback on its
predictions, the weights will gradually become more reflective of which features are
most important for predicting risk. For example, if the model continues to predict
correctly that high cholesterol and high blood pressure are the most important
indicators of risk, their weights will continue to increase, while less relevant features
(such as exercise frequency) might have their weights reduced.

📝 1.3.10

Which of the following steps occurs when the system adjusts the weights in a
medical diagnosis model?

• The weights of the features that helped make correct predictions are
increased.

• The weights of all features are decreased over time.
• The system ignores the features that led to incorrect predictions.
• The weights of features that were incorrect in making predictions are

reduced.

Machine Learning Types

Chapter 2

Machine Learning Types | FITPED AI

25

2.1 Machine learning types

🕮 2.1.1

Machine learning is a method of teaching machines to perform tasks by learning
from data instead of being explicitly programmed. One of the fundamental aspects
of machine learning is the type of feedback provided during the learning process.
Feedback determines how the model learns, adapts, and improves.

There are three main types of machine learning: supervised learning, reinforcement
learning, and unsupervised learning.

• In supervised learning, the model is trained on labeled data, where both the
inputs and their corresponding outputs are known. This allows the model to
learn by example. For instance, when teaching a system to recognize
handwritten digits, images of numbers are paired with their correct labels
(e.g., "5" or "9"). Supervised learning is particularly effective for tasks like
classification (assigning categories) or regression (predicting values), where
the correct output is always provided during training.

• In contrast, reinforcement learning operates by trial and error. Instead of
receiving exact answers, the system learns through rewards and penalties
based on its actions. A classic example is a robot navigating a maze. The
robot might get rewarded for moving closer to the exit and penalized for
hitting walls. Over time, it learns the best strategy to achieve its goal. This
type of learning is commonly used in gaming, robotics, and dynamic
environments where actions influence future outcomes.

• Finally, unsupervised learning (learning without a teacher) involves no
labeled data or explicit guidance. Instead, the model explores the data and
identifies hidden patterns or structures on its own. For example, in customer
segmentation, an unsupervised model can group customers based on
shared characteristics without knowing in advance what those groups
represent. This approach is often used for clustering, anomaly detection, and
exploratory data analysis.

📝 2.1.2

Assign the correct name of the learning type to the characteristics of learning.

the algorithm receives information about the evaluation of the action, but not about
what the correct action should have been - _____

the algorithm has immediate availability of sensations about both inputs and
outputs - _____

Machine Learning Types | FITPED AI

26

the algorithm does not receive any information about what the correct actions should
be - _____

• Unsupervised learning
• Reinforcement learning
• Supervised learning

🕮 2.1.3

Supervised learning

Supervised learning is a fundamental approach to machine learning where models
are trained on labeled datasets. Each input data point is paired with a corresponding
output, allowing the system to learn by example. This process involves teaching the
model to map inputs (e.g., an image) to known outputs (e.g., the digit represented in
the image). For instance, a supervised learning system trained to recognize
handwritten digits might be given thousands of labeled examples, such as an image
of "5" paired with the label "5."

This type of learning is particularly effective for tasks like classification, where data
is categorized into predefined groups (e.g., spam vs. non-spam emails), and
regression, where the model predicts continuous values (e.g., predicting housing
prices). By analyzing the labeled data, supervised learning algorithms learn to
generalize, enabling them to make accurate predictions on new, unseen data.

Supervised learning is widely used in everyday applications, from speech recognition
to fraud detection, and is known for its reliability when sufficient labeled data is
available. However, the accuracy of these models heavily depends on the quality and
size of the labeled dataset, as poor or insufficient data can lead to underperforming
models.

📝 2.1.4

What type of data does supervised learning use?

• Labeled data with inputs and outputs.
• Data without labels or guidance.
• Data with rewards and penalties.
• Randomly generated synthetic data.

Machine Learning Types | FITPED AI

27

🕮 2.1.5

Reinforcement learning

Reinforcement learning (RL) is a unique approach to machine learning that involves
learning through rewards and penalties. Unlike supervised learning, where correct
answers are provided for every input, RL systems learn by interacting with an
environment and receiving feedback based on their actions. This feedback could be
positive (reward) for desirable actions or negative (penalty) for undesirable ones.

For example, consider a robot navigating a maze. The robot might receive a reward
when it moves closer to the exit and a penalty for hitting walls. Over time, the robot
learns a strategy, or "policy," to maximize its rewards and efficiently navigate the
maze. This trial-and-error approach makes reinforcement learning ideal for tasks
where actions have a long-term impact on outcomes, such as gaming, robotics, and
autonomous vehicles.

Reinforcement learning excels in dynamic and complex environments where clear
rules for success are not predefined. However, designing effective reward systems
and ensuring efficient exploration of the environment can be challenging. Despite
these challenges, RL has led to remarkable achievements, such as AI systems
defeating human champions in games like chess and Go.

📝 2.1.6

Which of the following are characteristics of reinforcement learning?

• Rewards and penalties guide learning.
• Actions influence future outcomes.
• Models require labeled data.
• Explicit guidance is provided for every action.

🕮 2.1.7

Unsupervised learning

Unsupervised learning stands apart from supervised and reinforcement learning by
operating on unlabeled data. Here, the model is not given explicit guidance or labeled
examples. Instead, it explores the dataset to discover hidden patterns, structures, or
relationships on its own. This makes unsupervised learning particularly valuable for
exploratory data analysis and tasks where labeled data is unavailable or impractical
to obtain.

Machine Learning Types | FITPED AI

28

A common application of unsupervised learning is clustering, where data points are
grouped into clusters based on shared characteristics. For example, in customer
segmentation, an unsupervised model might group customers based on purchasing
habits, identifying potential target markets. Another example is anomaly detection,
where the model flags data points that deviate significantly from the norm, such as
fraudulent transactions.

While unsupervised learning is powerful for uncovering insights, interpreting its
results often requires domain expertise, as the model does not assign labels or
meanings to the patterns it identifies. Nevertheless, its ability to analyze vast
amounts of unlabeled data makes it indispensable in fields like marketing, biology,
and network security.

📝 2.1.8

What is the primary characteristic of unsupervised learning?

• It identifies patterns in unlabeled data.
• It uses labeled data to learn by example.
• It relies on rewards and penalties for guidance.
• It requires a predefined hypothesis space.

🕮 2.1.9

Learning with a teacher

Machine learning with a teacher, involves teaching a system to apply a function f(x)
to an input x, resulting in an output y=f(x). In this type of learning, the system is
provided with examples of inputs and their corresponding outputs, allowing it to learn
the relationship between them. The goal is for the system to generalize this
knowledge and apply it to new, unseen data.

The necessity of supervised learning arises when we cannot explicitly define the
function f(x) ourselves. For instance, we may not have the formula to solve a problem
directly, but we can collect data containing inputs and the desired outputs. This data
acts as a guide for the system to infer the underlying function. An example of such a
scenario is Mr. Hirsh's problem: the input x is the name of a conference participant,
and the output f(x) is a "+" or "-" sign, indicating some binary classification.

Machine Learning Types | FITPED AI

29

When learning with a teacher, the algorithm doesn’t guess randomly. Instead, it
searches for the best approximation of the true function based on the given data. To
do this, the algorithm explores a predefined range of possible functions, known as
the hypothesis space. This space defines the set of potential functions the system
evaluates to find the one that most accurately maps inputs to outputs.

This process is at the heart of many practical applications of machine learning. By
training a model with supervised learning, we empower it to handle tasks such as
predicting stock prices, identifying objects in images, or classifying email as spam
or not. The quality of results depends heavily on the diversity of examples in the
training data and the algorithm's ability to navigate the hypothesis space efficiently.

📝 2.1.10

What is the hypothesis space in supervised learning?

• The set of potential functions considered by the algorithm.
• The space where training data is stored.
• The physical location of the machine learning system.
• The formula for the correct function f(x).

🕮 2.1.11

When learning with a teacher, the learning algorithm is provided with the correct
output for a given input. Each ordered pair (x,f(x)) represents an "example," where x
is the input, and f(x) is the corresponding output of the function for that input. Given
a collection of such examples of the function fff, the goal of the algorithm is to return
a function hhh, called the hypothesis, which serves as an estimate or approximation
of f.

The number of output classes (for classification problems) is predefined by the user.
The systems do not rely on any additional domain-specific information beyond the
provided training examples.

Machine Learning Types | FITPED AI

30

Many problems that at first glance do not look like classification problems can be
transformed into classification problems. In the following examples, we show what
constitutes the input x and the output f(x), i.e., what constitutes an example for each
classification task:

Diagnosis of the disease

• x: Patient characteristics (symptoms, laboratory tests)
• f(x): Disease (or maybe: recommended treatment)

Part-of-speech tagging

• x: English/Slovak sentence
• f(x): Parts of speech in a sentence

Face recognition

• x: Bitmap image of a person's face
• f(x): Name and surname of the person (or maybe: property)

Automatic control

• x: Bitmap image of the road surface in front of the car
• f(x): Degrees of steering wheel rotation

📝 2.1.12

Choose which claims apply to learning with a teacher (supervised learning)

• For classification tasks, the number of classes is fixed and is determined by
the user.

• The method does not use any other domain-specific information except for
training examples.

• To evaluate the success of the method, the predicted values are compared
with the actual values of the test set.

• Not suitable for regression types of tasks.

Machine Learning Types | FITPED AI

31

2.2 Model evaluation

🕮 2.2.1

Machine learning is not just about creating algorithms - it is a structured process
aimed at solving real-world problems through data. This process involves several key
steps that ensure the model is well-suited to the domain, utilizes clean and relevant
data, and produces meaningful results. Let’s break down these steps:

1. Understanding the domain and objectives - before diving into data, it is
crucial to understand the problem domain and establish clear objectives.
This involves defining what the system is supposed to achieve, identifying
constraints, and leveraging prior knowledge about the field. For example, in
developing a machine learning model for predicting customer churn, one
must understand customer behaviors, business metrics, and why customers
may leave.

2. Data integration, selection, and pre-processing - high-quality data is the
foundation of effective ML models. Data from various sources is integrated,
irrelevant or redundant data is removed, and missing or inconsistent data is
addressed through cleansing. Pre-processing may also involve
normalization, encoding categorical variables, and splitting the data into
training and testing sets. These steps prepare the data to be useful and
relevant for training the model.

3. Creating models involves selecting or designing the appropriate machine
learning model to address the problem. Models are trained using the pre-
processed data, allowing them to identify patterns or make predictions. For
instance, regression models might predict continuous values like house
prices, while classification models might identify spam emails.
Experimentation with different models and tuning their hyperparameters are
also part of this stage.

4. Interpreting results - a machine learning model is only as good as its
outcomes. Interpreting results means analyzing the model's performance
using metrics such as accuracy, precision, recall, or F1-score. It is also
essential to evaluate whether the model generalizes well to unseen data and
if its predictions make sense in the given domain.

5. Deployment of models is the final phase, successful models are deployed
into real-world systems. This involves integrating the model with
applications, monitoring its performance, and periodically retraining it with
new data. For example, a deployed model predicting product
recommendations on an e-commerce site continuously updates based on
user behavior.

Machine Learning Types | FITPED AI

32

📝 2.2.2

Which step in the machine learning process involves cleaning and preparing the
data?

• Data integration and pre-processing
• Understanding the domain
• Creating models
• Deployment of models

📝 2.2.3

List the individual steps/phases of machine learning in the correct order.

• <|span style="color: rgb(0, 0, 0);">Understanding the domain, taking into
account prior knowledge and objectives<|/span>

• <|span style="color: rgb(0, 0, 0);">Data integration, selection, cleansing, pre-
processing<|/span>

• <|span style="color: black;">Interpretation of results<|/span>
• <|span style="color: rgb(0, 0, 0);">Creating models<|/span>
• <|span style="color: black;">Deployment of discovered

knowledge/models<|/span>

🕮 2.2.4

As a result of machine learning, a model, often represented as a formula or function,
that approximates patterns in data. This model is created using historical data, often
referred to as "examples," through a machine learning algorithm. Let's explore the
process with a bank example and discuss how to evaluate the resulting model.

• Model creation through historical data - machine learning uses past data to
predict future outcomes or classify new instances. Consider a application
that determines whether a customer should be granted a loan based on their
characteristics. Historical data, such as customer income, credit history, and
whether they repaid past loans, serves as the input dataset. These examples
are processed by a machine learning algorithm to generate a model that
generalizes the patterns observed in the data.

• Generalization - the generated model is not a mere replication of the
historical data. Instead, it acts as a generalization of the examples the
system was trained on. For instance, the banking model might learn that
customers with stable income and a good credit history are more likely to
repay loans, applying this pattern to new, unseen customers. This
generalization is what allows machine learning to make predictions or
decisions in new scenarios.

Machine Learning Types | FITPED AI

33

• Evaluating the model - once the model is created, it’s essential to evaluate
its effectiveness. Two critical questions arise:

1. Is the model good - this question examines whether the model's predictions
align with real-world outcomes. It involves testing the model on data that
was not part of its training to see how accurately it performs.

2. How good is it - to measure the model’s performance, metrics like accuracy,
precision, recall, or mean squared error are used, depending on the task. For
instance, in the banking application, accuracy might represent the
percentage of correct loan predictions, while precision could focus on how
many approved loans were correctly identified as repayable.

• Importance of Continuous Evaluation - models must be regularly assessed
to ensure they remain effective as data patterns evolve. A model that
performs well today may require updates or retraining in the future to
maintain its utility.

📝 2.2.5

Which statements about machine learning models are true?

• Models generalize patterns from historical data.
• Models can predict future outcomes using patterns from examples.
• Machine learning models replicate historical data exactly.
• Models do not need evaluation once created.

🕮 2.2.6

To assess the quality of a machine learning model, we simulate its performance on
unseen data.

To answer questions about the quality of the model, it is necessary to simulate an
estimate of our model as follows:

1. Remove some examples from a dataset
2. Create a model on remaining examples
3. Predict (estimate) deleted examples

This means that we need provide the machine learning algorithm with only a fraction
of the examples we have and we use them to train and build the model. We will call
these examples the training examples or the training set.

Machine Learning Types | FITPED AI

34

We use the remaining examples to test our model. These are examples that were not
used when creating the model. We will call these examples test examples or a test
set.

This is usually achieved by dividing our dataset into two parts at the begin of process.
Whole process ise defined as:

1. Dividing the dataset - to begin, we set aside a portion of the dataset for
testing purposes. This process involves: removing some examples from the
dataset.

2. Creating model using the remaining examples (the training set) to create
and train the model. The training set provides the algorithm with examples it
can learn from, enabling it to build the model based on observed patterns.

3. After the model is created, its accuracy and effectiveness are tested using
the test set, which contains examples not included in the training phase.
These test examples have known outcomes, making it possible to evaluate
the model's predictions against real-world results.

It should be noted that even in the remaining examples, we also have the
corresponding outputs for individual inputs. For example, for a banking application,
we also have information in the test set whether the client has repaid the loan or not.
Therefore, if we bring examples of the test set to the input of our model, we can find
out the predicted result by the model and compare it with the real historical result.

This approach is important because by separating training and test data, we ensure
that the model’s evaluation is unbiased. If we used the same data for both training
and testing, the model might perform well simply because it memorized the
examples, not because it generalized well to new, unseen data.

📝 2.2.7

Why is it important to evaluate a machine learning model using a test set?

• To test the model on examples it has not seen before.
• To allow the model to memorize the data.
• To increase the size of the training dataset.
• To improve the speed of model training.

Machine Learning Types | FITPED AI

35

🕮 2.2.8

When creating models and interpreting the results, it is necessary to assess the
suitability of the model, its correctness and accuracy. In the case of several models,
it is necessary to choose a better model.

This brings us to the problem of How to measure accuracy? Which model is better?
There is no clear answer to these questions.

For example, if we wanted to create a model for diagnosing a certain disease, and
we know that 10 out of 10,000 samples are positive.

We would create multiple models. At first glance, the following statements about the
models we have created seem correct:

• A: "the classification model has a success rate of 80%"
• B: "classification model is 400% better than random selection"
• C: "the classification model perfectly captures all positive cases"

However, if we look at these claims in more detail, we find the following potential
issues.

• A: "the classification model has a success rate of 80%". This model looks
very promising. However, if we create a model that labels all samples as
negative, then with 10 positives out of 10,000 samples we will achieve a
success rate of 99.9%. So if we do nothing and say that all samples are
negative, we have a 99.9% success rate.

• B: "classification model is 400% better than random selection". Such a
model would also look very promising at first glance. However, with 10
positives out of 10 000 samples, one positive out of 1000 samples will be
randomly selected. If the algorithm is 400% better, then it can identify 4
positives out of 1000 samples. But is this estimate enough for us?

• C: "the classification model perfectly captures all positive cases". Of the
above, perhaps the best-looking claim for a potential model, However, if we
create a classifier with only one rule that each sample is positive, then we
will also perfectly capture all positive cases. But would such a model be
necessary?

It is clear from the above statements that we have to assess the suitability of a model
from different perspectives and that numerical representations of suitability alone
are not always sufficient.

Machine Learning Types | FITPED AI

36

📝 2.2.9

Why is it insufficient to rely solely on the "success rate" when evaluating a
classification model?

• It does not account for false positives and false negatives.
• Success rate measures only the speed of classification.
• It requires random sampling of data for validity.
• Success rate is the most reliable metric for classification models.

📝 2.2.10

Which of the following statements highlight potential issues with evaluating
classification models?

• A model with a high success rate might ignore positive cases entirely.
• Claims about improvements over random selection may still yield poor

results.
• Models are always sufficient if they perfectly capture positive cases.
• High accuracy guarantees the model is suitable for all use cases.

2.3 Practical examples

📝 2.3.1

Project: Introduction

In this object-lesson, we will learn the basics of Python, especially the so-called
DataFrame, which precompiles tables of data. The latter is precisely the most
commonly used data structure, which consists of labelled axes (rows and columns).

To load the data file into the DataFrame, we will use the pandas library, which we will
import using the following command.

import pandas as pd

In this demonstration, we will work with Titanic passenger data stored at the URL
https://priscilla.fitped.eu/data/pandas/titanic.csv.

Use the following command to read and write the data file.

https://priscilla.fitped.eu/data/pandas/titanic.csv

Machine Learning Types | FITPED AI

37

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data)

Program output:
 PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

..

886 887 0 2

887 888 1 1

888 889 0 3

889 890 1 1

890 891 0 3

 Name Sex

Age SibSp \

0 Braund, Mr. Owen Harris male

22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female

38.0 1

2 Heikkinen, Miss. Laina female

26.0 0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female

35.0 1

4 Allen, Mr. William Henry male

35.0 0

..

... ...

886 Montvila, Rev. Juozas male

27.0 0

887 Graham, Miss. Margaret Edith female

19.0 0

888 Johnston, Miss. Catherine Helen "Carrie" female

NaN 1

889 Behr, Mr. Karl Howell male

26.0 0

890 Dooley, Mr. Patrick male

32.0 0

 Parch Ticket Fare Cabin Embarked

Machine Learning Types | FITPED AI

38

0 0 A/5 21171 7.2500 NaN S

1 0 PC 17599 71.2833 C85 C

2 0 STON/O2. 3101282 7.9250 NaN S

3 0 113803 53.1000 C123 S

4 0 373450 8.0500 NaN S

..

886 0 211536 13.0000 NaN S

887 0 112053 30.0000 B42 S

888 2 W./C. 6607 23.4500 NaN S

889 0 111369 30.0000 C148 C

890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

We will list the contents of only one specific column according to the following
command:

dataAge = data['Age']

print(dataAge)

Program output:
0 22.0

1 38.0

2 26.0

3 35.0

4 35.0

 ...

886 27.0

887 19.0

888 NaN

889 26.0

890 32.0

Name: Age, Length: 891, dtype: float64

Sometimes it is necessary to find out the i-th record in the data file. This can be
viewed using .iloc

rec = data.iloc[0]

print(rec)

Program output:
PassengerId 1

Machine Learning Types | FITPED AI

39

Survived 0

Pclass 3

Name Braund, Mr. Owen Harris

Sex male

Age 22.0

SibSp 1

Parch 0

Ticket A/5 21171

Fare 7.25

Cabin NaN

Embarked S

Name: 0, dtype: object

To find out the data file types, use the following command:

typs = data.dtypes

print(typs)

Program output:
PassengerId int64

Survived int64

Pclass int64

Name object

Sex object

Age float64

SibSp int64

Parch int64

Ticket object

Fare float64

Cabin object

Embarked object

dtype: object

• and the length of the data file by using the len() function.

length = len(data)

print(length)

Program output:
891

Machine Learning Types | FITPED AI

40

When working in python in machine learning tasks, we often need to know the shape
of our data (number of rows and columns).

• Using the following command, we find that our data file contains 891
columns and 12 rows.

shap = data.shape

print(shap)

Program output:
(891, 12)

The basic descriptive statistics of the dataset are returned by the describe()
function.

print(data.describe())

Program output:
 PassengerId Survived Pclass Age

SibSp \

count 891.000000 891.000000 891.000000 714.000000

891.000000

mean 446.000000 0.383838 2.308642 29.699118

0.523008

std 257.353842 0.486592 0.836071 14.526497

1.102743

min 1.000000 0.000000 1.000000 0.420000

0.000000

25% 223.500000 0.000000 2.000000 20.125000

0.000000

50% 446.000000 0.000000 3.000000 28.000000

0.000000

75% 668.500000 1.000000 3.000000 38.000000

1.000000

max 891.000000 1.000000 3.000000 80.000000

8.000000

 Parch Fare

count 891.000000 891.000000

mean 0.381594 32.204208

std 0.806057 49.693429

min 0.000000 0.000000

25% 0.000000 7.910400

Machine Learning Types | FITPED AI

41

50% 0.000000 14.454200

75% 0.000000 31.000000

max 6.000000 512.329200

📝 2.3.2

Which solution correctly displays the Name column?

import pandas as pd

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data['Name'])

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data.'Name')

data = titanic

data['Name']()

📝 2.3.3

Next, we will explore some of the features of the sklearn library, which is one of the
most widely used libraries for machine learning

First, we need to determine our features (features, or x-data) that will be the input to
the machine learning model and the end value (target, or y) that will be the output of
the machine learning model.

The following code sample loads the Titanic passenger data into a DataFrame data
structure and divides it into features and target, where features are all values except
the last column Embarked and target is embarked.

import pandas as pd

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

X, y = data.iloc[:, :-1], data.iloc[:, [-1]]

print(X)

print(y)

Machine Learning Types | FITPED AI

42

Program output:
 PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

..

886 887 0 2

887 888 1 1

888 889 0 3

889 890 1 1

890 891 0 3

 Name Sex

Age SibSp \

0 Braund, Mr. Owen Harris male

22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female

38.0 1

2 Heikkinen, Miss. Laina female

26.0 0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female

35.0 1

4 Allen, Mr. William Henry male

35.0 0

..

... ...

886 Montvila, Rev. Juozas male

27.0 0

887 Graham, Miss. Margaret Edith female

19.0 0

888 Johnston, Miss. Catherine Helen "Carrie" female

NaN 1

889 Behr, Mr. Karl Howell male

26.0 0

890 Dooley, Mr. Patrick male

32.0 0

 Parch Ticket Fare Cabin

0 0 A/5 21171 7.2500 NaN

1 0 PC 17599 71.2833 C85

2 0 STON/O2. 3101282 7.9250 NaN

3 0 113803 53.1000 C123

Machine Learning Types | FITPED AI

43

4 0 373450 8.0500 NaN

..

886 0 211536 13.0000 NaN

887 0 112053 30.0000 B42

888 2 W./C. 6607 23.4500 NaN

889 0 111369 30.0000 C148

890 0 370376 7.7500 NaN

[891 rows x 11 columns]

 Embarked

0 S

1 C

2 S

3 S

4 S

.. ...

886 S

887 S

888 S

889 C

890 Q

[891 rows x 1 columns]

When solving machine learning tasks, we divide the data into training and testing
data.

Using the training data, we train the machine learning model and then validate it on
the test data.

The sklearn library provides a function train_test_split that splits the data into two
variables, where the first variable (usually referred to as X_train) contains the data
that will be used later for training, and the second variable (usually referred to as
X_test) contains the data that will be used to validate the model.

We further divided our features and target data into training and test data in the ratio
of 80:20 using the following commands.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

Machine Learning Types | FITPED AI

44

📝 2.3.4

We have data with 4 features columns. Split the data into training and test data in a
70:30 ratio. Find the shape in the X_test variable. What is the correct shape of the
X_test variable if the dataset from the given URL has 1000 rows?

• (300, 4)
• (1000, 3)
• (700, 4)
• (700, 4)
• (300, 3)

Classification

Chapter 3

Classification | FITPED AI

46

3.1 Classification

🕮 3.1.1

Classification is a fundamental concept in machine learning, used to predict
categorical labels for data points. To classify, we need a classifier—an algorithm that
can categorize the data into predefined classes. For example, in fraud management,
we might have a dataset in a .csv file with two columns: one containing the message
and the other containing a binary label (0 for non-hoax and 1 for hoax). The task of
classification involves determining which messages are hoaxes and which are not
based on patterns in the data. This process is often referred to as "training a model"
and is one of the primary tasks in supervised learning.

The classification process typically involves two main stages: training and testing. In
the training stage, a portion of the dataset (e.g., 75%) is used to teach the model. This
is known as the training set. During training, the model examines the features of the
messages (e.g., words or phrases) and learns patterns that indicate whether a
message is a hoax or not. Once the model is trained, it proceeds to the testing phase,
where it uses the remaining 25% of the dataset (the test set) to evaluate its
performance by predicting whether the messages are hoaxes or not. The model then
outputs a prediction, which is compared to the actual label (0 or 1).

In practice, the accuracy of the model is evaluated by comparing the predicted labels
to the actual ones in the test set. A good classifier will be able to generalize well,
meaning it can predict accurately on new, unseen data. By training and testing the
model on different portions of the data, we ensure that the classifier is robust and
not overfitting to a particular subset of the data.

📝 3.1.2

What is the main task of classification?

• Predict categorical labels
• Predict numerical values
• Summarize data
• Group similar data points

📝 3.1.3

Which stage of classification uses a portion of data to evaluate the model's
performance?

• Training

Classification | FITPED AI

47

• Testing
• Testing and training
• None of the above

🕮 3.1.4

Binary classification

Binary classification is one of the simplest and most widely used types of
classification tasks. It involves classifying data into one of two categories. A
common example of binary classification is email spam detection, where the input
data (features) might include properties such as the subject line, sender, or content
of the email. The model’s task is to classify the email as either "spam" (represented
by 1) or "not spam" (represented by 0).

To train a binary classifier, we use a labeled dataset where each message is already
tagged as either spam or not. During the training phase, the classifier learns to
distinguish between the characteristics of spam and non-spam emails by examining
patterns in the data. For instance, it may learn that certain words like "free" or "offer"
are commonly found in spam messages. After the training process, the model is
tested on a separate portion of the data to evaluate its performance. The model then
predicts whether new, unseen emails are spam or not based on the learned patterns.

The simplicity of binary classification makes it a popular choice for many real-world
applications. It can be used for tasks like fraud detection, sentiment analysis, and
medical diagnosis. However, the model's success depends on the quality and variety
of the data it is trained on. If the data is not representative of the real-world scenarios
the model will face, it may struggle to make accurate predictions.

📝 3.1.5

What does a binary classification model predict?

• Two classes
• More than two classes
• Continuous values
• Textual outputs

Classification | FITPED AI

48

📝 3.1.6

Which of the following is an example of binary classification?

• Spam detection in emails
• Email categorization by topic
• Image classification with multiple classes
• Predicting stock prices

🕮 3.1.7

Multiclass classification

Multiclass classification is used when the target variable has more than two classes.
Unlike binary classification, which predicts between two categories, multiclass
classification involves categorizing data into multiple possible classes. A common
example of multiclass classification is categorizing types of flowers, where the
output could be one of several flower species, such as "rose," "tulip," or "sunflower."

In multiclass classification, the model is trained on a dataset with more than two
labels. For instance, if we wanted to classify flower types, the dataset would include
images of different flowers with labels for each species. The model learns to identify
patterns in the features (e.g., petal shape, color) that correspond to each class. After
training, the model is tested on new data to check how well it can predict the correct
flower species.

Multiclass classification algorithms typically use one-vs-all or one-vs-one strategies
to handle multiple classes. The one-vs-all approach trains a classifier for each class,
while the one-vs-one approach compares every pair of classes and predicts the most
likely class. These strategies help the model make accurate predictions when there
are more than two potential outputs.

📝 3.1.8

Which of the following is a typical task for multiclass classification?

• Flower species categorization
• Spam detection
• Fraud detection
• Sentiment analysis

Classification | FITPED AI

49

📝 3.1.9

In multiclass classification, which approach compares each pair of classes?

• One-vs-one
• One-vs-all
• One-vs-many

🕮 3.1.10

Multi-label classification

Multi-label classification is a more complex type of classification in which each data
point can be assigned multiple labels. For instance, in an image classification task,
a single image might contain a dog, a person, and a table, all of which are objects
present in the image. In such cases, the classifier does not predict a single class but
rather multiple classes for each data point.

In multi-label classification, the model is trained to predict several labels for each
input. Unlike binary and multiclass classification, where only one label is assigned
per data point, multi-label classification requires the model to recognize multiple
relevant labels. For example, an image classifier might output a vector where each
element represents the presence or absence of a specific object in the image. After
training, the model can predict the labels for new images, such as "dog," "person,"
and "table," based on the patterns it learned during training.

The challenge with multi-label classification lies in ensuring that the model does not
assign irrelevant labels. For instance, if a model is trained to recognize animals, it
should not label a table as an animal. To address this, techniques such as binary
relevance or classifier chains are used. These methods ensure that the model
considers the relationships between labels and makes more accurate predictions.

📝 3.1.11

Which of the following is an example of multi-label classification?

• Classifying objects in an image (e.g., dog, person, table)
• Predicting a single disease diagnosis
• Predicting the genre of a movie
• Sentiment analysis

Classification | FITPED AI

50

📝 3.1.12

What is a common challenge in multi-label classification?

• Ensuring that irrelevant labels are not assigned
• Assigning a single label per data point
• Managing large datasets
• Handling missing values

3.2 Taxonomy of classification models

🕮 3.2.1

Classification models are vital tools in machine learning, used to sort data into
categories or predict outcomes. They differ in how they process data, handle rules,
and learn from patterns. This chapter divides classification models into three main
categories: symbolical, statistical, and subsymbolical. These categories help us
understand the underlying principles and capabilities of various models and
determine when and why to use them.

The distinction is based on the type of logic or mathematics a model employs to
make decisions:

• Symbolical models use explicit, human-readable rules and logic.
• Statistical models rely on probabilities and mathematical distributions.
• Subsymbolical models mimic biological processes or are inspired by

complex systems, often working as black boxes.

Understanding this taxonomy is crucial for selecting the right model for specific
tasks. For example, symbolical models excel in scenarios requiring transparency,
while subsymbolical models are powerful for handling unstructured data like images.
Statistical models strike a balance by leveraging mathematical rigor to generalize
patterns effectively.

📝 3.2.2

Choose correct category:

- _____ models mimic biological processes or are inspired by complex systems, often
working as black boxes.

Classification | FITPED AI

51

- _____ models use explicit, human-readable rules and logic.

- _____ models rely on probabilities and mathematical distributions.

• Ordinal
• Statistical
• Random
• Classification
• Neural
• Symbolical
• Subsymbolical

🕮 3.2.3

Symbolical models

Symbolical classification models are based on explicit rules or logic. These models
provide a clear and interpretable decision-making process. They use if-else rules or
similar logical structures to map input data to categories. This makes symbolical
models ideal for applications where interpretability and transparency are paramount,
such as fraud detection or medical diagnosis.

One of the most common symbolical models is the decision tree, which represents
decisions as a tree-like structure. Each branch of the tree corresponds to a decision
rule, and each leaf represents a predicted category. For example, in a decision tree
predicting whether a person will buy a product, a rule might be:

If age is greater than 25 and income is high, predict "yes"

Another example is the rule-based classifier, which explicitly defines sets of rules
for classification. For instance, a spam filter might use rules like

If the email contains the word 'free' and has a large number

of links, classify it as spam

The main advantage of symbolical models is their interpretability. However, they can
struggle with complex data and may require manual effort to define rules or grow
overly complex when handling large datasets. Despite this, their simplicity makes
them a valuable tool for beginners and experts alike.

Classification | FITPED AI

52

📝 3.2.4

Which of the following is a characteristic of symbolical classification models?

• They use explicit rules and logic to make decisions.
• They rely on probabilities and mathematical distributions.
• They are designed to mimic biological processes.
• They operate entirely as black-box systems.

🕮 3.2.5

Statistical models

Statistical classification models are grounded in mathematics and probabilities.
These models analyze the relationships between input features and output
categories to make predictions. Unlike symbolical models, statistical models often
require numerical data and work well with large datasets.

A well-known statistical model is Logistic regression, used for binary classification.
For example, logistic regression might predict whether a student will pass or fail an
exam based on study hours and attendance rates. The model calculates the
probability of each outcome using a sigmoid function and assigns the category with
the highest probability.

Another example is Naive Bayes, a probabilistic model based on Bayes’ Theorem. It
is widely used in text classification tasks like spam detection. For instance, Naive
Bayes can classify an email as spam or not by calculating probabilities based on
word occurrences.

Statistical models are valued for their mathematical rigor and ability to generalize
well from data. However, they may require feature engineering, and their
interpretability depends on the specific algorithm. Their balance between simplicity
and performance makes them a popular choice across industries.

📝 3.2.6

Which of the following are examples of statistical classification models?

• Logistic Regression
• Naive Bayes
• Decision Tree
• Neural Networks

Classification | FITPED AI

53

🕮 3.2.7

Subsymbolical models

Subsymbolical models operate on principles inspired by biology or complex systems.
They are often considered black-box models because their decision-making
processes are not easily interpretable. These models excel in handling unstructured
data like images, text, or sound, where patterns are not easily defined by rules or
probabilities.

A classic example of a subsymbolical model is the Artificial Neural Network (ANN).
Inspired by the human brain, ANNs consist of layers of interconnected nodes
(neurons) that process and transform data. For instance, a neural network can
classify whether an image contains a cat or a dog by learning patterns in pixel data.

Another example is the Support Vector Machine (SVM), which finds the optimal
hyperplane to separate data points of different classes. While mathematical at its
core, SVMs often operate on principles that are less interpretable, making them
closer to subsymbolical models.

Subsymbolical models are powerful but computationally intensive. They require large
datasets and advanced hardware for training. Additionally, their black-box nature
makes them challenging to interpret, which can be a drawback in sensitive
applications like healthcare.

📝 3.2.8

Which of the following best describes subsymbolical classification models?

• They often function as black boxes and handle unstructured data well.
• They rely on explicit rules and decision trees.
• They are based entirely on probabilities and statistical methods.
• They are designed only for small datasets.

🕮 3.2.9

The three categories of classification models - symbolical, statistical, and
subsymbolical - serve different purposes and excel in distinct scenarios. Symbolical
models are favored for their transparency and simplicity, making them suitable for
applications requiring interpretable decisions. Statistical models balance
interpretability and performance, offering reliable results in many domains.
Subsymbolical models, while complex, are indispensable for tasks involving
unstructured data.

Classification | FITPED AI

54

For example, consider a bank classifying customers for loan eligibility. A symbolical
model like a decision tree might be used for its interpretability, allowing the bank to
explain decisions to customers. In contrast, predicting customer churn might benefit
from a statistical model like logistic regression, while detecting fraudulent
transactions in real time could require the power of a neural network.

Choosing the right model depends on the nature of the data, the complexity of the
task, and the need for interpretability.

📝 3.2.10

Which factors influence the choice of a classification model category?

• The nature of the data (e.g., structured or unstructured)
• The need for interpretability
• The availability of feature rules
• The transparency of subsymbolical models

🕮 3.2.11

Application

The taxonomy of classification models guides their application across various
industries. For example, in healthcare, symbolical models like rule-based classifiers
are used for diagnosing diseases due to their interpretability. Statistical models such
as logistic regression are employed for predicting patient outcomes, while
subsymbolical models like neural networks power advanced image-based
diagnostics.

In finance, statistical models like Naive Bayes are utilized for credit scoring, while
subsymbolical models are used for detecting fraud in large volumes of transactional
data. Symbolical models might assist in compliance checks where decisions need to
be explainable.

The versatility of these categories also extends to fields like education, where
statistical models predict student performance, and technology, where neural
networks drive speech and image recognition. Understanding the strengths and
limitations of each category ensures their optimal use in solving real-world problems.

Classification | FITPED AI

55

📝 3.2.12

Which classification model is most suitable for diagnosing diseases in a transparent
manner?

• Rule-based classifier
• Logistic regression
• Neural network
• Support vector machine

Tree-based Learning

Chapter 4

Tree-based Learning | FITPED AI

57

4.1 Decision trees

🕮 4.1.1

Decision Trees (DTs) are a nonparametric supervised learning method used for both
classification and regression tasks. They work by splitting the data into smaller
subsets based on decision rules derived from the input features. This process is
repeated recursively, resulting in a tree-like structure where each internal node
represents a decision on an attribute, and each leaf node represents an outcome.
Decision Trees are popular for their simplicity and intuitive structure, making them
ideal for explaining predictions to non-technical audiences.

The advantages of decision trees include:

• They are simple to understand and interpret.
• Trees can be visualized.
• It does not require additional data preparation (e.g. data normalization,

removal of blanks).
• It can handle both numeric and categorical data (however, the scikit-learn

library does not yet support categorical variables).
• They handle the problem of classification into multiple classes.
• They belong to the so-called white box models. They are easy to explain and

interpret.
• The model can be validated using statistical tests. This allows to be taken

into account the reliability of the model.

The disadvantages of decision trees are as follows:

• Decision trees can produce overly complex trees that undergeneralize the
data (overfitting).

• Decision trees can be unstable because small deviations in the data can lead
to the generation of a completely different tree.

• Decision tree predictions are neither smooth nor continuous. They are
piecewise constant approximations.

• If some classes dominate, the wrong trees may be generated.

Decision trees are versatile and widely used in areas such as customer
segmentation, medical diagnosis, and credit scoring. For example, a bank might use
a Decision Tree to determine whether a customer is eligible for a loan based on
income, credit history, and employment status. However, in datasets where one class
significantly dominates, Decision Trees might produce biased results. Techniques
like balancing the dataset or using ensemble methods like Random Forest can help
address this issue.

Tree-based Learning | FITPED AI

58

📝 4.1.2

Which of the following are true about Decision trees?

• They are simple to interpret and can be visualized.
• They do not require extensive data preparation.
• They produce smooth and continuous predictions.
• They are unaffected by small variations in the data.

🕮 4.1.3

We will demonstrate the creation of decision trees using a credit application as an
example. The goal will be to create an application that, after inputting the monitored
characteristics of a bank customer, decides whether or not the bank recommends
granting credit to that customer. The main part of the application will be a
classification model created by us, whose output will be a "Yes" or "No"
recommendation.

For example, we can imagine a decision tree classification model as follows:

Tree-based Learning | FITPED AI

59

The decision tree represents a visualized set of rules for classification. In our
example, a client who has a fair credit score and wants a 5-year loan may apply for
a loan at a bank. The created decision tree model finds that if credit = fair, then the
length of the loan Term still needs to be checked. This is 5 years in the case of our
client. The tree then shows that the client is marked as safe and the model
recommends giving him credit.

📝 4.1.4

According to the following decision tree model, determine the recommendation for
the following client:

Client1 - (Term=5 years; Credit=poor; Income=high)

• Recommendation: Safe
• Recommendation: Risky

🕮 4.1.5

The question remains how to build such a decision tree model. Like all other machine
learning models, decision trees will be created from historical data. Based on the
historical data of previous clients, and their loans repayment or default, a decision
tree will be created from this data.

Tree-based Learning | FITPED AI

60

Our goal will be not only to build a decision tree, but to find the best possible decision
tree that will predict future credits with the smallest possible error.

📝 4.1.6

What is the primary goal when creating a decision tree for credit applications?

• To predict future credits with the smallest possible error.
• To create a model that recommends credit with no human intervention.
• To ensure all clients are marked as safe.
• To manually check the loan terms for every client.

Tree-based Learning | FITPED AI

61

🕮 4.1.7

A large number of trees can be generated for the selected dataset. The exponentially
large number of possible trees makes learning a decision tree difficult!

When generating a decision tree, it is important to evaluate each tree (the models
created) and decide which one is better. Therefore, quantification of the quality of
the tree is necessary. This mark can be determined in a number of ways, which we
refer to as performance metrics.

Of these, the simplest metric appears to be: classification error. This is calculated
as follows:

According to the formula, it can be seen that the classification error reaches values
from 0 to 1. The closer to zero, the better classification. The best value is 0 of
misclassified samples out of n samples. Therefore, the result will be 0.

The worst value is n errors out of n samples, it means. n / n = 1

📝 4.1.8

We have a decision tree. Out of 28 examples in the test set, 14 can classify correctly.
What is his classification error?

• 14 / 28 = 0,5
• 1
• 0
• 28/14 = 2
• 14 / (28 + 14) = 0,33333

📝 4.1.9

Which statements about classification error in decision trees are true?

• Classification error is a performance metric used to evaluate decision trees.
• The best classification error value is 1.
• A classification error of 0 indicates perfect classification with no errors.
• The worst classification error value is 0.

Tree-based Learning | FITPED AI

62

4.2 Greedy algorithm

🕮 4.2.1

The greedy algorithm is a step-by-step approach used to build decision trees. It
focuses on making the locally optimal choice at each step with the hope that these
choices will lead to a globally optimal solution. In the context of decision tree
construction, the algorithm selects the attribute that best splits the dataset at each
node, aiming to maximize the separation of classes.

Imagine a training set with historical records of loan repayments. For example, this
set may include 12 loans, where 8 loans were successfully repaid, and 4 loans were
defaulted. The goal of the greedy algorithm is to split this data repeatedly based on
the features available, creating a tree structure that can classify future loan
applicants as likely to repay or default.

Steps of the Greedy algorithm:

1. Choose the best attribute for the root node, the algorithm evaluates all
available attributes to determine which attribute provides the most effective
split. Metrics such as information gain, Gini impurity, or entropy are often
used for this evaluation.

2. Split the dataset into subsets based on the selected attribute. Each subset
corresponds to one branch of the tree.

3. Repeat the process for each subset, the process is repeated recursively. The
best attribute for splitting the subset is chosen, creating additional nodes
and branches.

4. Stop when criteria are met - the algorithm stops when all data in a node
belongs to the same class, or when further splits do not improve
classification significantly.

Tree-based Learning | FITPED AI

63

For instance, if the training set includes attributes such as income, credit history, and
loan purpose, the algorithm may first split the data based on credit history if it
provides the most significant improvement in classification accuracy. Subsequent
splits may focus on other attributes, forming a tree that mimics logical decision-
making.

The greedy nature of the algorithm means it does not backtrack or reconsider earlier
decisions. While efficient, this can lead to suboptimal solutions if the algorithm fails
to consider the bigger picture.

📝 4.2.2

What is the primary goal of the greedy algorithm in decision tree construction?

• To make the best local decision at each step to maximize class separation
• To maximize the depth of the tree
• To backtrack and refine earlier splits
• To split the dataset randomly

📝 4.2.3

From the table on the bank's past clients and their ability to repay the loan, find out
how many high-income women (income = high, gender = female) have repaid their
loan. Enter the number as the answer for this question.

Tree-based Learning | FITPED AI

64

🕮 4.2.4

The first step of the greedy algorithm is:

• Start with an empty tree and calculate the classification error of the empty
tree

In the case of our dataset, where 8 clients have repaid the loan and 4 clients have
not, the classification error will be 4/(4+8) = 0.3333

The frequency of distribution of clients to one of the two classes is visualized in the
histogram.

The empty tree shows that if we do nothing further and say that all clients will be
labelled "Yes", it means, they will be safe clients, then we make a classifier with a
classification error of 0.3333.

Tree-based Learning | FITPED AI

65

The second step of the greedy algorithm will be:

• Split the data by features/attributes.

According to our training set we can split the data according to the Account property
as follows:

For each subset, according to the splitting property of the account, we created
histograms of the representation of the target variable in each subset.

📝 4.2.5

According to the histograms, determine how many "Yes" and "No" loan repayment
values were in the group with the medium account, it means for the property Account
= Medium.

Tree-based Learning | FITPED AI

66

• Yes = 3; No = 2
• Yes = 1; No = 2
• Yes = 4; No = 0

🕮 4.2.6

We just created a depth-1 tree with one splitting property - Account. The third step of
the greedy algorithm is:

• Make a prediction if possible

Note that for the condition Account = High, all examples are in the class "Yes". This
means that in the past, all clients who had a high account have repaid the loan. In
this case, we can make a prediction because there is no data from any other class
already in this branch of the tree.

Tree-based Learning | FITPED AI

67

In the case of medium and low accounts, there is no clear class. Nevertheless, we
can also make a prediction here if necessary. We could make a prediction according
to the majority of the class, i.e. for the medium account the prediction would be Yes
and for the low account it would be No. However, this would only create a tree of
depth 1. Therefore, a better option is to continue recursively creating a tree from each
subset of the data.

Tree-based Learning | FITPED AI

68

📝 4.2.7

We can now summarize the whole greedy algorithm. It looks like this:

Step 1: start with empty trees

Step 2: select a property for data splitting

Step 3: create a distribution according to the selected

property

For each distribution of the tree:

 Step 4: If you cannot go any further, make

a prediction

 Step 5: Otherwise go to Step 2 & continue

with recursion of this distribution

In the given algorithm we find 2 questionable parts. The first is Step 2. It is a problem
of feature selection, i.e. Feature split selection.

The second questionable part is Step 4, which deals with the problem of stopping
the tree creation, i.e. stopping condition.

We discuss both of these issues in the next chapter.

Tree-based Learning | FITPED AI

69

📝 4.2.8

What are the questionable parts of the greedy algorithm when building decision
trees?

• Feature split selection
• Stopping condition for tree creation
• Prediction based on random guessing
• Recursive creation of a tree
• Always creating a depth-1 tree

4.3 Choosing the best properties

🕮 4.3.1

The first problem in the construction of decision trees is the selection of the best
feature for distribution. This problem takes advantage of the "computational power
of machine learning algorithms". In our example, the algorithm will proceed by
creating a simple tree of depth 1 for each feature considered. In such a tree, it must
always decide for prediction. Therefore, it will perform the prediction according to
the most represented class in the data subset.

Tree-based Learning | FITPED AI

70

Let us now consider all the trees of depth 1 constructed in this way. To find the most
appropriate feature, we use the classification error. For example, we can compare a
tree for a distribution according to Account and a tree according to Receipt.

We perform the comparison according to the classification error. Thus, we select the
feature whose tree has the smallest classification error. We also compare this with
the empty tree.

Tree-based Learning | FITPED AI

71

It remains for us to compare the results of the classification errors.

The lowest classification error is obtained by dividing by ACCOUNT.

📝 4.3.2

Correctly complete the formula for calculating the classification error and the best
and worst possible value of the classification error

classification error =

__

The best possible value of the classification error is _____.

The worst possible value of the classification error is _____.

• number of incorrect predictions
• 1
• number of all examples
• 0

Tree-based Learning | FITPED AI

72

🕮 4.3.3

Feature split selection algorithm

The feature split selection is a crucial step in building decision trees. This process
determines how the dataset at each node is divided, directly influencing the tree's
accuracy and complexity. The aim is to identify the best feature to split the data in a
way that minimizes misclassification. The algorithm for feature split selection
follows a structured approach to ensure optimal results.

1. The algorithm starts with a given subset of data M, representing the current
node in the decision tree. This subset contains historical information used to
evaluate different features. The main idea is to systematically assess each
feature to determine its ability to separate data into more homogeneous
groups, thereby improving prediction accuracy.

2. For each feature hi(x), the algorithm partitions the subset M using a splitting
rule associated with that feature. This creates a single-level decision tree.
For instance, if the feature is "Account Balance," the data might be split into
subsets like "High," "Medium," and "Low." Each subset is then evaluated for
its classification accuracy.

3. The next step is to calculate the classification error for the resulting tree
created by the feature hi(x). The classification error measures the proportion
of misclassified samples, guiding the algorithm to identify splits that reduce
errors.

4. After evaluating all features, the algorithm selects the function h∗(x) with the
smallest classification error as the optimal feature for the split.

This approach ensures that the tree grows in a way that improves prediction
accuracy with each level.

📝 4.3.4

What is the primary goal of the feature split selection algorithm in decision trees?

• To minimize classification error by selecting the best feature for splitting
• To maximize the depth of the decision tree
• To reduce the number of features in the dataset
• To eliminate outliers from the data

Tree-based Learning | FITPED AI

73

🕮 4.3.5

Stopping conditions

The stopping condition is a critical component of the greedy algorithm in decision
tree construction. It determines when to halt the growth of the tree, ensuring that the
model remains effective without becoming overly complex. Without a proper
stopping condition, decision trees can grow excessively, leading to overfitting and
poor generalization on new data.

1. One of the most straightforward stopping conditions occurs when there is nothing
left in the nodes to split. This situation arises when all the samples in a node belong
to the same class or when the data cannot be further divided based on the available
features. For example, if all clients in a node have successfully repaid their loans, no
further splitting is required, and the tree can terminate at that point.

2. Another stopping condition is when all the features in the dataset have been used.
Since decision trees split data based on features, the algorithm must stop when no
additional features are available for further partitioning. This ensures that the tree
construction process remains finite and avoids unnecessary computations.

3. The third common stopping condition is when further division does not lead to a
lower classification error. If the algorithm finds that splitting a node does not
improve the tree's performance or reduces misclassification rates, it halts the
process. This approach balances model complexity and prediction accuracy,
preventing the creation of overly detailed trees that capture noise instead of
meaningful patterns.

Tree-based Learning | FITPED AI

74

📝 4.3.6

Which of the following are stopping conditions for the greedy algorithm in decision
tree construction?

• There is nothing left in the nodes to split
• All features have been used
• The tree reaches a depth of 5
• Further division does not achieve a lower classification error

🕮 4.3.7

The previous examples aimed to simplify the process of decision tree creation to
make it more understandable. While we used classification error as the criterion for
feature selection, this metric is rarely applied in real-world tasks. Instead, more
sophisticated measures, such as the Gini Index or Information Gain, are preferred.
These metrics provide a more detailed evaluation of how well a feature splits the
data into meaningful subsets.

Another simplification was the evaluation of the model's success using classification
error alone. In practical scenarios, this approach is often insufficient. Instead,
performance measures like accuracy, precision, recall, and F1-score are commonly
employed to evaluate and compare models. Among these, accuracy is the quickest
and simplest to calculate, making it a popular choice for initial evaluations.

Additionally, for ease of explanation, we focused only on categorical variables in tree
formation. However, real-world datasets often contain both categorical and
continuous variables. When dealing with continuous variables, decision tree
algorithms introduce thresholds to divide the data. For example, instead of directly
using "income" as a feature, a tree might use conditions like "income > $50,000" to
split the data effectively.

Fortunately, modern programming languages provide libraries with ready-made
methods for decision tree construction. These libraries handle the complex steps of
tree creation, such as choosing the stopping condition or selecting the feature split
metric. Users can customize these aspects by simply setting method parameters,
making decision tree implementation both flexible and accessible for a wide range
of tasks.

📝 4.3.8

In a simple dataset, the features (rich, handsome) of the last four suitors of Gertrude
B are recorded. The relationship feature tells whether Gertrude B. stayed with a suitor
for more than 1 month, i.e. it records long-term relationships.

Tree-based Learning | FITPED AI

75

We want to create a decision tree model that will predict whether Gertrude will stay
with her partner for more than a month, i.e. we will model the relationship feature.
Which feature (rich or handsome) will be selected as the first feature to create such
a decision tree? I.e. which of the two features will be selected as more appropriate
for data- feature split selection?

• both features can be selected as appropriate, i.e. likely to be selected at
random

• rich
• handsome

📝 4.3.9

Which of the following metrics is commonly used for feature selection in real-world
decision trees?

• Gini Index
• Classification error
• Accuracy
• Recall

4.4 Performance metrics

🕮 4.4.1

Now that we can create a decision tree using a greedy algorithm, the next step is to
evaluate its performance. In machine learning, performance evaluation is crucial to
understand how well a model generalizes to unseen data. For decision trees, two
basic metrics are commonly used: classification error and classification accuracy.

Classification error measures the proportion of incorrectly classified instances in the
dataset. It is calculated using the formula:

Classification Error = Number of incorrect classifications /

Total number of examples

This metric ranges from 0 to 1, where a value of 0 indicates perfect classification (no
errors) and a value of 1 indicates that every prediction was incorrect.

Classification accuracy, on the other hand, evaluates the proportion of correctly
classified instances. Its formula is:

Accuracy = 1 - Classification Error

Tree-based Learning | FITPED AI

76

Or equivalently:

Accuracy = Number of correct classifications / Total number of

examples

These two metrics are inversely related. A low classification error implies high
accuracy, and vice versa. For instance, if a decision tree has a classification error of
0.2 (20%), its accuracy would be 0.8 (80%).

While these metrics are intuitive and easy to calculate, they are not always sufficient
to assess a model's true performance, especially in datasets with imbalanced
classes. Advanced metrics like precision, recall, and F1-score are often used
alongside these to provide a more comprehensive evaluation.

📝 4.4.2

Which of the following statements about classification error and classification
accuracy are true?

• Classification error measures the proportion of incorrectly classified
instances.

• Classification accuracy is equal to 1−Classification Error.
• Classification accuracy can exceed 100%.
• Classification error is always higher than classification accuracy.

🕮 4.4.3

Metrics are essential in machine learning because they provide a quantitative way to
measure the performance of models. When working with decision trees or any other
model, metrics help to understand how well the model is performing and whether it
meets the expectations. Without metrics, it would be difficult to assess whether a
model is improving, how it compares to previous versions, or how it fares against
other models.

Metrics are important for several reasons:

• Quantifying model quality - metrics transform the abstract concept of model
performance into concrete numbers. For instance, classification accuracy
tells us what percentage of our model's predictions were correct. Other
metrics, such as precision, recall, and F1-score, allow us to further break
down the performance based on specific classes, especially when dealing
with imbalanced datasets.

• Tracking improvements - as you refine your machine learning models -
whether by changing the model structure, tuning hyperparameters, or

Tree-based Learning | FITPED AI

77

improving the dataset - metrics help quantify improvements. They show how
well the model adapts to changes over time, providing a clear picture of
whether a particular change has had a positive impact.

• Guiding model optimization - metrics can also guide decisions on pruning
and other model optimizations. In decision trees, for example, metrics can
inform when to stop growing the tree or prune certain branches to prevent
overfitting.

• Benchmarking expectations - metrics are also crucial for comparing actual
performance to expected or desired performance. During model
development, you may set performance goals based on the dataset, problem
complexity, or domain. Metrics allow you to evaluate how close the model
comes to meeting these goals.

• Measuring progress - over time, you want to track whether the model's
performance is improving. By consistently using the same metrics, you can
measure progress towards better accuracy, faster predictions, or other
desired attributes.

📝 4.4.4

Why are metrics important in machine learning?

• Metrics help to quantify the quality of the model and track improvements
over time.

• Metrics can predict future data without needing a model.
• Metrics provide a solution to all types of machine learning problems.
• Metrics always guarantee that the model will be correct.

🕮 4.4.5

Classification errors

In classification tasks, evaluating the performance of a model requires an
understanding of the types of errors it can make. Specifically, we focus on two main
types of errors: false positives and false negatives. These errors have significant
implications for how we measure the success of a model and how we can improve
it.

• False Positive (Type I error) occurs when the model incorrectly classifies a
negative example as positive. In other words, the model predicts the
presence of a condition or event that does not exist. This type of error is also
called a false alarm. For example, in a medical test designed to detect a
disease, a false positive would mean that a healthy person is incorrectly
diagnosed as sick. False positives are particularly problematic when the cost
of a false alarm is high, such as in security systems or fraud detection.

Tree-based Learning | FITPED AI

78

• False Negative (Type II error) occurs when the model incorrectly classifies a
positive example as negative. In this case, the model fails to identify the
condition or event that is actually present. For example, in the same medical
test scenario, a false negative would mean that a person who is actually sick
is incorrectly classified as healthy. False negatives are often more
dangerous because they can result in missed opportunities for intervention,
such as failing to diagnose a patient with a treatable condition.

According to these two types of errors, we can calculate the performance metrics of
the model-classifier.

Imagine a fraud detection system used by a bank to identify fraudulent transactions.
If the system incorrectly labels legitimate transactions as fraud (false positives),
customers might be inconvenienced with incorrect alerts. If it fails to detect actual
fraudulent transactions (false negatives), the bank could suffer financial losses. In
this case, the model needs to be optimized to minimize both types of errors,
depending on which one has a higher cost.

📝 4.4.6

Which of the following statements are correct regarding false positives and false
negatives?

• False negatives occur when a positive instance is incorrectly classified as
negative.

• False positives are always less costly than false negatives.
• False positives occur when a negative instance is incorrectly classified as

positive.
• False negatives are always more costly than false positives.

Tree-based Learning | FITPED AI

79

🕮 4.4.7

In addition to understanding classification errors, it is also essential to recognize the
types of classification successes that a model can achieve. These successes
correspond to when the model makes correct predictions, either by correctly labeling
a positive example as positive or a negative example as negative.

Types of classification success

1. True Positive (TP) occurs when a positive example is correctly classified as
positive. In other words, the model correctly predicts the presence of the
condition or event. For example, in a medical test, a true positive would mean
that a patient who actually has a disease is correctly identified as having it.

2. True Negative (TN) happens when a negative example is correctly classified
as negative. In this case, the model accurately predicts that the condition or
event does not exist. For example, a true negative would mean that a healthy
patient is correctly identified as not having the disease.

These two types of success contribute to the overall accuracy of the model, which
measures how often the model makes the correct prediction, both for positive and
negative instances.

📝 4.4.8

Which of the following statements about classification success is true?

• A true positive occurs when a positive instance is correctly labeled as
positive.

• A true negative occurs when a positive instance is incorrectly labeled as
negative.

• A true negative occurs when a negative instance is incorrectly labeled as
positive.

Tree-based Learning | FITPED AI

80

• A true positive occurs when a negative instance is incorrectly labeled as
positive.

🕮 4.4.9

Confusion matrix

The confusion matrix is a tool used to summarize the performance of a classification
model. It is a table that allows you to visualize how well the model is performing with
respect to the actual class labels and predicted class labels. The confusion matrix
includes:

• True Positives (TP) - correctly predicted positive cases.
• True Negatives (TN) - correctly predicted negative cases.
• False Positives (FP) - negative cases incorrectly classified as positive.
• False Negatives (FN) - positive cases incorrectly classified as negative.

The confusion matrix is a valuable tool for understanding how the model is
performing in greater detail than just using a single metric like accuracy. It helps us
see where the model is making mistakes, whether it is more prone to false positives
or false negatives, and thus allows for more informed decision-making when tuning
or evaluating the model.

then the Accuracy can be calculated as follows:

Accuracy = Number of correct classifications / Total number of

examples

 = (TrueNegative + TruePositive) / (TrueNegative +

FalsePositive + TruePositive + FalseNegative)

Accuracy = (TN + TP) / (TN + FP + TP + FN)

Tree-based Learning | FITPED AI

81

For the above mentioned confusion matrix, Accuracy is calculated by substituting
into the formula:

Accuracy = (55 + 30) / (55 + 5 + 30 + 10)

Example: Credit risk classification

Let's imagine a credit risk classification model used by a bank to predict whether a
customer will default on a loan. The model will classify customers into two
categories: those who will default (positive class) and those who will not (negative
class). The confusion matrix for this model might look like:

This matrix shows how many instances were correctly classified as "default" (TP)
and "no default" (TN), as well as how many defaults were missed (FN) and how many
non-defaults were falsely flagged as defaults (FP).

📝 4.4.10

Which of the following statements about classification success is true?

• A true positive occurs when a positive instance is correctly labeled as
positive.

• A true negative occurs when a positive instance is incorrectly labeled as
negative.

• A true negative occurs when a negative instance is incorrectly labeled as
positive.

• A true positive occurs when a negative instance is incorrectly labeled as
positive.

Tree-based Learning | FITPED AI

82

4.5 Advanced metrics

🕮 4.5.1

Accuracy is a popular metric in machine learning for assessing a model's
performance. However, is accuracy a good metric? In the previous example, we used
the following confusion matrix

We calculated:

Accuracy = (TN + TP) / (TN + FP + TP + FN)

Accuracy = (55 + 30) / (55 + 5 + 30 + 10) = 0.85

However, its reliability decreases significantly when dealing with imbalanced
datasets, where one class greatly outnumbers the other. Consider a heavily
imbalanced dataset where 90% of the examples are negative. If we build a naive
classifier that predicts all samples as negative, the confusion matrix looks like this:

Based on matrix, we can now calculate the accuracy:

Accuracy = (TN + TP) / (TN + FP + TP + FN)

Accuracy = (90 + 0) / (90 + 0 + 0 + 10) = 0.9

Tree-based Learning | FITPED AI

83

This classifier is clearly weak, as it completely fails to identify any positive cases, but
the high accuracy score misleadingly suggests otherwise.

Using Accuracy in such scenarios, it can lead to misleading interpretation of the
results. When datasets are imbalanced, accuracy is dominated by the majority class.
It doesn’t reflect how well the model identifies minority class instances, which are
often the focus of interest (e.g., detecting fraud or disease).

Instead of accuracy, metrics like precision, recall, and the F1-score provide more
balanced evaluations of model performance.

📝 4.5.2

Why is accuracy not a good metric for imbalanced datasets?

• It does not account for class imbalances.
• It requires additional computations.
• It only works with balanced datasets.
• It depends entirely on precision and recall.

🕮 4.5.3

Prevalence

In addition to the other metrics, there is a dataset balance metric. Prevalence is a
metric that reflects the balance of a dataset by quantifying the proportion of positive
samples relative to the total number of samples. It is calculated as:

Prevalence = #positives / (#positives + #negatives)

The ideal prevalence value is around 0.5, indicating an even balance between positive
and negative samples. When prevalence deviates significantly from 0.5, it signals an
imbalance that may affect the performance of machine learning models, especially
those that rely on metrics like accuracy.

Importance of prevalence is based on:

1. Dataset imbalance detection - prevalence helps identify whether a dataset is
skewed toward one class. For example, in medical datasets, where only 5%
of samples may represent a rare disease, the prevalence is 0.05, indicating a
significant imbalance.

2. Metric selection - when prevalence is far from 0.5, relying on accuracy as a
performance metric can be misleading. Instead, other metrics like F1-score,
precision, and recall become more reliable.

Tree-based Learning | FITPED AI

84

3. Model choice and training - understanding prevalence can guide decisions
about balancing techniques, such as resampling or adjusting class weights,
to ensure that minority classes are properly represented during training.

Confusion matrices can be presented in various formats, which is why checking row
and column headers is crucial. Here are two examples:

Standard notation where rows represent the actual labels, and columns represent
the predicted labels:

Inverted Notation

Some confusion matrices may flip the rows and columns:

It is always necessary to check the column and row headers in confusion matrix.
Both notations contain the same information but interpret the axes differently,
making careful observation essential.

Tree-based Learning | FITPED AI

85

📝 4.5.4

Which of the following are true about prevalence?

• It measures the balance of positive to total samples.
• An ideal prevalence value is around 0.5.
• It helps detect dataset imbalances.
• It is irrelevant to confusion matrices.

🕮 4.5.5

Precision

Precision is a critical performance metric for evaluating classifiers, especially in
scenarios where the cost of false positives is high. It quantifies the proportion of
correctly predicted positive examples out of all examples predicted as positive.
Precision is calculated as:

Precision = True Positives (TP) / (True Positives (TP) +

False Positives (FP))

Accuracy should ideally achieve 1 (high) for a good classifier.

Precision indicates how reliable the classifier's positive predictions are. A high
precision score means that when the model predicts a positive label, it is correct
most of the time. This is especially important in applications such as:

1. Spam detection - a low precision in spam detection could mean that many
legitimate emails are incorrectly flagged as spam.

2. Fraud detection - high precision ensures that flagged transactions are likely
to be fraudulent, minimizing unnecessary interventions.

3. Medical diagnoses - for life-critical conditions, high precision reduces false
alarms, ensuring that only true cases are flagged for further investigation.

Tree-based Learning | FITPED AI

86

Precision achieves the ideal value of 1 when the number of false positives (FP) is
zero, meaning every positive prediction is correct. However, precision can be
sensitive to class imbalances. For instance, in datasets where the positive class is
rare, precision alone may not reflect the overall performance and should be
considered alongside other metrics like recall and F1-score.

📝 4.5.6

What does a high precision score indicate in a classification model?

• Most positive predictions made by the model are correct.
• The model predicts both positive and negative classes equally well.
• The model minimizes false negatives effectively.
• The dataset is balanced.

🕮 4.5.7

Recall

Recall, also known as sensitivity or the true positive rate, is a critical metric in
classification, especially in tasks where identifying all positive instances is essential.
Recall quantifies the ability of the model to detect all actual positive cases and is
calculated as:

Recall = TP / (TP + FN)

Recall emphasizes how many actual positive examples the classifier successfully
identifies. A high recall is vital in scenarios where missing a positive case can have
severe consequences. For example:

• Medical diagnoses - high recall ensures that patients with a condition are
identified, minimizing false negatives that could delay treatment.

• Fraud detection - high recall ensures most fraudulent transactions are
caught, reducing potential losses.

Tree-based Learning | FITPED AI

87

• Spam filtering - ensuring all spam emails are filtered (high recall) prevents
unwanted messages from reaching the inbox.

For recall to achieve the ideal value of 1, the number of false negatives (FN) must be
zero. This means the model correctly identifies every actual positive case. However,
focusing exclusively on recall can lead to increased false positives (FP), so recall is
often balanced with precision using the F1-score.

📝 4.5.8

Which statements about recall are correct?

• Recall measures the ability of the model to detect all actual positive cases.
• Recall is calculated using true positives and false negatives.
• A high recall ensures that all predictions made by the model are correct.
• Recall is unrelated to false positives.

🕮 4.5.9

Review:

Tree-based Learning | FITPED AI

88

📝 4.5.10

Complete the formula

Precision = _____ / (_____)

• TP + TN
• TP + FP
• TN + FP
• TN
• FP
• TP

🕮 4.5.11

F1 score

The F1 score is a widely used performance metric in machine learning, especially in
classification tasks where the balance between precision and recall is critical. It
combines these two metrics into a single measure, providing a more comprehensive
evaluation of the model.

The F1 score is calculated as the harmonic mean of precision and recall, given by:

F1_score = 2 * (Precission * Recall) / (Precission + Recall)

This metric ensures that both precision and recall are equally weighted. Unlike the
arithmetic mean, the harmonic mean penalizes extreme values, making the F1 score
sensitive to imbalances between precision and recall.

The F1 score is particularly useful in scenarios where:

• Imbalanced data - it balances the importance of false positives (FP) and
false negatives (FN), which is essential when one class significantly
outweighs the other.

• Evaluation trade-offs helps evaluate models where both precision and recall
are important, such as medical diagnostics, spam detection, and fraud
analysis.

• General model assessment - a high F1 score ensures the classifier is good at
both detecting positive cases (high recall) and being precise in its
predictions (high precision).

Tree-based Learning | FITPED AI

89

In an ideal classifier:

• Precision = 1 - all positive predictions are correct (no false positives).
• Recall = 1 - all actual positives are detected (no false negatives).

This results in an F1 score = 1, representing perfect balance and performance.

If precision or recall is significantly low, the F1 score will drop. For example:

• High precision, low recall indicates many positives are missed.
• Low precision, high recall indicates many negatives are wrongly classified

as positives.

Thus, the F1 score is a better metric for overall performance than precision or recall
alone.

📝 4.5.12

What does the F1 score represent?

• The harmonic mean of precision and recall.
• The geometric mean of precision and recall.
• The arithmetic mean of precision and recall.
• The difference between precision and recall.

4.6 Practical examples

📝 4.6.1

Project: Decision tree in action

We will demonstrate the creation of decision trees with a practical example in
Python. In the practical example, we will try to create a decision tree model for loan
prediction. We load the data for our model from the file uvery.csv using the Pandas
library.

Tree-based Learning | FITPED AI

90

import pandas

loans =

pandas.read_csv('http://priscilla.fitped.eu/data/machine_learn

ing/loans.csv', sep=';')

With simple head() and tail() commands we can check our data. We can also use the
discribe() method to display the basic statistics for our file. Since the file contains
only categorical variables, the basic statistics will be very simple.

print("---------------------------")

print(loans.head())

print("---------------------------")

print(loans.tail())

print("---------------------------")

print(loans.describe())

Program output:

 Client Income Account Gender Unemployed Credit

0 c1 high high female no yes

1 c2 high high male no yes

2 c3 low low male no no

3 c4 low high female yes yes

4 c5 low high male yes yes

 Client Income Account Gender Unemployed Credit

7 c8 high low female yes yes

8 c9 low medium male yes no

9 c10 high medium female no yes

10 c11 low medium female yes no

11 c12 low medium male no yes

 Client Income Account Gender Unemployed Credit

count 12 12 12 12 12 12

unique 12 2 3 2 2 2

top c1 low high female no yes

freq 1 7 4 6 6 8

From the above results, it is easy to see that our set contains 12 examples. The target
variable that our model will predict is the variable Loan with possible values Yes and
No.

Tree-based Learning | FITPED AI

91

We will create the decision tree model using the scikit-learn library. It is one of the
most widely used libraries for machine learning. However, in the case of decision tree
models, this library cannot handle categorical variables. For this reason, we need to
convert the categorical variables to numerical variables in our dataset.

By quick reasoning, a function can be created to convert categorical variables. In our
example, we convert a categorical variable feature (i.e., a column in pandas) Income.

loans["Income_int"] = loans["Income"]

def cat2int(column):

 vals = list(set(column))

 for i, string in enumerate(column):

 column[i] = vals.index(string)

 return column

cat2int(loans['Income_int'])

print(loans.head())

Program output:
 Client Income Account Gender Unemployed Credit Income_int

0 c1 high high female no yes 0

1 c2 high high male no yes 0

2 c3 low low male no no 1

3 c4 low high female yes yes 1

4 c5 low high male yes yes 1

Note the new feature Income_int. Its interpretation is easy as long as we also have
the Income feature. However, we need to be aware of several shortcomings of this
approach. The first shortcoming is that this conversion does not always set low
income to 0, high income to 1. If we already consider multiple categorical values, e.g.
slightly higher, medium, very low, etc. the clarity of the numerical values may be
unclear. Especially, if we do not see the original Income column.

For these reasons, so-called dummies are used to convert categorical variables into
numerical variables. Dummies create a new feature (column) for each value of a
categorical variable. For the Income feature, the dummies will look as follows:

Tree-based Learning | FITPED AI

92

In Python, we can create dummies by simply calling the appropriate method.

loans =

pandas.get_dummies(loans,columns=["Income"],drop_first=False)

print(loans.head())

Program output:
 Client Account Gender Unemployed Credit Income_int

Income_high Income_low

0 c1 high female no yes 0

True False

1 c2 high male no yes 0

True False

2 c3 low male no no 1

False True

3 c4 high female yes yes 1

False True

4 c5 high male yes yes 1

False True

Tree-based Learning | FITPED AI

93

📝 4.6.2

We can now use the previous information about categorical variables and dummies
to create sample code where we load our dataset and transfer all the necessary
features using dummies.

import pandas

loans =

pandas.read_csv('http://priscilla.fitped.eu/data/machine_learn

ing/loans.csv', sep=';')

print("---------------------------")

print(loans.head())

loans =

pandas.get_dummies(loans,columns=["Income"],drop_first=False)

loans=

pandas.get_dummies(loans,columns=["Account"],drop_first=False)

loans=

pandas.get_dummies(loans,columns=["Gender"],drop_first=False)

loans=

pandas.get_dummies(loans,columns=["Unemployed"],drop_first=Fal

se)

print("---------------------------")

print("Dataset after dummies:")

print("---------------------------")

print(loans.head())

Program output:

 Client Income Account Gender Unemployed Credit

0 c1 high high female no yes

1 c2 high high male no yes

2 c3 low low male no no

3 c4 low high female yes yes

4 c5 low high male yes yes

Dataset after dummies:

 Client Credit Income_high Income_low Account_high

Account_low \

0 c1 yes True False True

False

Tree-based Learning | FITPED AI

94

1 c2 yes True False True

False

2 c3 no False True False

True

3 c4 yes False True True

False

4 c5 yes False True True

False

 Account_medium Gender_female Gender_male Unemployed_no

Unemployed_yes

0 False True False True

False

1 False False True True

False

2 False False True True

False

3 False True False False

True

4 False False True False

True

Note, that after applying dummies, we not only created new features, but we also
deleted the original features.

An interesting and often used method is the Counters method. This gives us a quick
look at the distribution of values in each feature. For example, if we want to know the
number of 0 and 1 values for the variable Income_High, we can use Counters.

from collections import Counter

print(Counter(loans.Income_high))

Program output:
Counter({False: 7, True: 5})

Use the Counters function to see how many Yes and No values are in the Loan
feature.

from collections import Counter

fill your code

print(Counter(___))

Tree-based Learning | FITPED AI

95

Program output:
Counter()

• 8 values Yes and 4 values No
• 4 values Yes and 8 values No
• 0 values Yes and 1 values No

📝 4.6.3

Project: Go to play?

Analyze the given weather dataset and build a decision tree classification model to
predict whether to "Play" or not, based on the weather conditions.

• Dataset: https://priscilla.fitped.eu/data/machine_learning/golf_nominal.csv

1. Load and pre-process the dataset

• The code snippet transforms categorical columns in the golf DataFrame into
one-hot encoded columns using the pandas.get_dummies() function. E.g.
Converts the categorical values in the Outlook column into separate binary
(0/1) columns for each category (e.g., Outlook_overcast, Outlook_rainy,
Outlook_sunny).

import pandas

from collections import Counter

from sklearn.tree import DecisionTreeClassifier # Import

Decision Tree Classifier

from sklearn.model_selection import train_test_split # Import

train_test_split function

from sklearn import metrics #Import scikit-learn metrics

module for accuracy calculation

golf =

pandas.read_csv('https://priscilla.fitped.eu/data/machine_lear

ning/golf_nominal.csv', sep=';')

Create columns with categorical values

golf =

pandas.get_dummies(golf,columns=["Outlook"],drop_first=False)

https://priscilla.fitped.eu/data/machine_learning/golf_nominal.csv

Tree-based Learning | FITPED AI

96

golf =

pandas.get_dummies(golf,columns=["Temperature"],drop_first=Fal

se)

golf =

pandas.get_dummies(golf,columns=["Humidity"],drop_first=False)

golf =

pandas.get_dummies(golf,columns=["Windy"],drop_first=False)

print(golf.head())

Program output:
 Play Outlook_overcast Outlook_rainy Outlook_sunny

Temperature_cool \

0 yes True False False

False

1 yes True False False

True

2 yes True False False

False

3 yes True False False

False

4 yes False True False

False

 Temperature_hot Temperature_mild Humidity_high

Humidity_normal \

0 True False True

False

1 False False False

True

2 False True True

False

3 True False False

True

4 False True True

False

 Windy_False Windy_True

0 True False

1 False True

2 False True

3 True False

4 True False

Tree-based Learning | FITPED AI

97

• golf.columns.difference(['Play']) generates a list of column names excluding
Play.

• golf[...] selects all columns from the golf DataFrame except the Play column.
• This creates the feature set X, which includes all the one-hot encoded

columns for Outlook, Temperature, Humidity, and Windy.
• Creates DecisionTreeClassifier() and train model
• At the end print evaluation result - accuracy score

X = golf[golf.columns.difference(['Play'])]

y = golf.Play

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.5) # 50% training and 50% test

Create Decision Tree classifer object

clf = DecisionTreeClassifier()

Train Decision Tree Classifer

clf = clf.fit(X_train, y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

print(Counter(y_test))

Program output:
Accuracy: 0.5714285714285714

Counter({'yes': 4, 'no': 3})

And shows decision tree structure to check the process

import matplotlib.pyplot as plt

from sklearn.tree import export_graphviz

from io import BytesIO

from IPython.display import display

import pydotplus

from collections import Counter

from sklearn import metrics

from PIL import Image as PILImage

import numpy as np

Tree-based Learning | FITPED AI

98

Assuming clf, X_train, y_test, and y_pred are already

defined.

print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

print(Counter(y_test))

cols = X_train.columns

Generate DOT data

dot_data = StringIO()

export_graphviz(

 clf,

 out_file=dot_data,

 filled=True,

 rounded=False,

 special_characters=True,

 feature_names=cols,

 class_names=['0', '1']

)

Create graph from DOT data

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

Render the PNG image to memory

png_image = graph.create_png()

Load the PNG image into PIL for visualization

image = PILImage.open(BytesIO(png_image))

Convert to a NumPy array and display with matplotlib

fig, ax = plt.subplots(figsize=(12, 12))

ax.imshow(np.array(image))

ax.axis('off') # Turn off axes for cleaner output

plt.show()

Program output:
Accuracy: 0.5714285714285714

Counter({'yes': 4, 'no': 3})

Tree-based Learning | FITPED AI

99

📝 4.6.4

Project: Titanic survival

In this project, we will guide you through the creation of a simple decision tree.

The example shows a decision on whether or not a person will survive on the Titanic,
based on that person's features (characteristics).

• We will use the Titanic dataset. Local version:
https://priscilla.fitped.eu/data/pandas/titanic.csv

• A description of the individual columns is available at
https://data.world/nrippner/titanic-disaster-dataset

https://priscilla.fitped.eu/data/pandas/titanic.csv
https://data.world/nrippner/titanic-disaster-dataset

Tree-based Learning | FITPED AI

100

import pandas as pd

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data)

Program output:
 PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

..

886 887 0 2

887 888 1 1

888 889 0 3

889 890 1 1

890 891 0 3

 Name Sex

Age SibSp \

0 Braund, Mr. Owen Harris male

22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female

38.0 1

2 Heikkinen, Miss. Laina female

26.0 0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female

35.0 1

4 Allen, Mr. William Henry male

35.0 0

..

... ...

886 Montvila, Rev. Juozas male

27.0 0

887 Graham, Miss. Margaret Edith female

19.0 0

888 Johnston, Miss. Catherine Helen "Carrie" female

NaN 1

889 Behr, Mr. Karl Howell male

26.0 0

Tree-based Learning | FITPED AI

101

890 Dooley, Mr. Patrick male

32.0 0

 Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S

1 0 PC 17599 71.2833 C85 C

2 0 STON/O2. 3101282 7.9250 NaN S

3 0 113803 53.1000 C123 S

4 0 373450 8.0500 NaN S

..

886 0 211536 13.0000 NaN S

887 0 112053 30.0000 B42 S

888 2 W./C. 6607 23.4500 NaN S

889 0 111369 30.0000 C148 C

890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

To analyze whether a person would have survived the Titanic, we first decide which
features from the dataset to use for classification. After reviewing the available data,
we select the following features:

• Pclass - passenger class (1st, 2nd, or 3rd class)
• Sex- gender of the passenger
• Age of the passenger
• SibSp - number of siblings or spouses traveling with the passenger
• Parch - number of parents or children traveling with the passenger
• Embarked - port of boarding (C = Cherbourg, Q = Queenstown, S =

Southampton)

Our target variable for classification will be the Survived column, which indicates
whether the passenger survived or not.

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

print(data)

Program output:
 Survived Pclass Sex Age SibSp Parch Embarked

0 0 3 male 22.0 1 0 S

1 1 1 female 38.0 1 0 C

2 1 3 female 26.0 0 0 S

Tree-based Learning | FITPED AI

102

3 1 1 female 35.0 1 0 S

4 0 3 male 35.0 0 0 S

..

886 0 2 male 27.0 0 0 S

887 1 1 female 19.0 0 0 S

888 0 3 female NaN 1 2 S

889 1 1 male 26.0 0 0 C

890 0 3 male 32.0 0 0 Q

[891 rows x 7 columns]

• This dataset has several null values (they are marked as NaN). We first
delete them by removing those rows that contain such values.

data = data.dropna()

print(data)

Program output:
 Survived Pclass Sex Age SibSp Parch Embarked

0 0 3 male 22.0 1 0 S

1 1 1 female 38.0 1 0 C

2 1 3 female 26.0 0 0 S

3 1 1 female 35.0 1 0 S

4 0 3 male 35.0 0 0 S

..

885 0 3 female 39.0 0 5 Q

886 0 2 male 27.0 0 0 S

887 1 1 female 19.0 0 0 S

889 1 1 male 26.0 0 0 C

890 0 3 male 32.0 0 0 Q

[712 rows x 7 columns]

Note, that after removing the null values out of the original 891 records, only 712
records left.

If we want to preserve the number of records, we can apply other methods to deal
with null values, e.g. replace them with (substitution).

• The Embarked column should be binarized. This is done using the
get_dummies function.

• We also change the gender values male to 0 and female to 1.

Tree-based Learning | FITPED AI

103

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

print(data)

Program output:
 Survived Pclass Sex Age SibSp Parch Embarked_C

Embarked_Q \

0 0 3 0 22.0 1 0 False

False

1 1 1 1 38.0 1 0 True

False

2 1 3 1 26.0 0 0 False

False

3 1 1 1 35.0 1 0 False

False

4 0 3 0 35.0 0 0 False

False

..

...

885 0 3 1 39.0 0 5 False

True

886 0 2 0 27.0 0 0 False

False

887 1 1 1 19.0 0 0 False

False

889 1 1 0 26.0 0 0 True

False

890 0 3 0 32.0 0 0 False

True

 Embarked_S

0 True

1 False

2 True

3 True

4 True

.. ...

885 False

886 True

887 True

889 False

Tree-based Learning | FITPED AI

104

890 False

[712 rows x 9 columns]

Data are prepared, now we can proceed to split it into features and target, and also
into training and testing in a ratio of 80:20.

We have added randomization to the train_test_split function, which will always
guarantee a deterministic distribution.

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

The data is prepared; we can create a decision tree model that will be trained.

We will also use randomization, to achieve always the same tree.

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(random_state=42)

clf = clf.fit(X_train, y_train)

print(X_train)

Program output:
 Age Embarked_C Embarked_Q Embarked_S Parch Pclass

Sex SibSp

472 33.0 False False True 2 2

1 1

432 42.0 False False True 0 2

1 1

666 25.0 False False True 0 2

0 0

30 40.0 True False False 0 1

0 0

291 19.0 True False False 0 1

1 1

..

... ...

Tree-based Learning | FITPED AI

105

93 26.0 False False True 2 3

0 1

135 23.0 True False False 0 2

0 0

338 45.0 False False True 0 3

0 0

549 8.0 False False True 1 2

0 1

131 20.0 False False True 0 3

0 0

[569 rows x 8 columns]

We have a decision tree model stored in the variable clf. Using the following line of
code, we obtain a prediction for the test data, which we also display.

y_pred = clf.predict(X_test)

print(y_pred)

Program output:
[1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1

0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0

1 0 0 0 0 0

 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0

0 1 0 0 0 0

 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1

1]

It remains to find out the classification metrics. First, we find out the accuracy – i.e.
we compare the predicted values and the actual survival values attributed to the test
data.

from sklearn import metrics

acc = metrics.accuracy_score(y_test, y_pred)

print("Accuracy:", acc)

Program output:
Accuracy: 0.7342657342657343

Precision, recall a f1 score will be calculated similarly.

Tree-based Learning | FITPED AI

106

from sklearn import metrics

prec = metrics.precision_score(y_test, y_pred)

print("Precision:", prec)

from sklearn import metrics

rec = metrics.recall_score(y_test, y_pred)

print("Recall:", rec)

from sklearn import metrics

f1 = metrics.f1_score(y_test, y_pred)

print("F1 score:", f1)

Program output:
Precision: 0.7450980392156863

Recall: 0.6031746031746031

F1 score: 0.6666666666666666

Here’s how the two examples would look as input for a DecisionTreeClassifier in
Python:

import pandas as pd

Assuming these are the feature names from the training data

feature_names = ['Age', 'Embarked_C', 'Embarked_Q',

'Embarked_S', 'Parch', 'Pclass','Sex', 'SibSp']

Create a DataFrame for the test data

test_data = pd.DataFrame(

 [[29, 1, 0, 0, 0, 1, 0, 0], # Example 1

 [45, 0, 1, 1, 1, 2, 1, 0]], # Example 2

 columns=feature_names

)

Predict survival

predictions = clf.predict(test_data)

print(predictions)

Program output:
[0 1]

Tree-based Learning | FITPED AI

107

📝 4.6.5

What is the correct code to create and train a decision tree?

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTree()

clf = clf.train(X_train, y_train)

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTree()

clf = clf.fit(X_train, y_train)

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

clf = clf.fit(X_train, y_train)

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

clf = clf.train(X_train, y_train)

⌨ 4.6.6 Predicted values

Complete the code to find out what values the model returns for test data that
represents 30% of the total available data.

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

data = data.dropna()

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

Tree-based Learning | FITPED AI

108

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

clf = clf.fit(X_train, y_train)

📝 4.6.7

How do we calculate accuracy?

acc = accuracy(y_true, y_pred)

acc = accuracy_score(y_true, y_pred)

acc = acc(y_true, y_pred)

acc = acc_score(y_true, y_pred)

📝 4.6.8

Complete the calculation and listing of recall.

_____ sklearn import _____

rec = metrics._____(y_test, _____)

print("Recall:", _____)

• recall_score
• metrics
• rec
• y_pred
• from

Tree Construction

Chapter 5

Tree Construction | FITPED AI

110

5.1 Overfitting

🕮 5.1.1

When creating the decision tree, we select individual features and sort the examples
one by one according to the features. In this way, we reduce the so-called training
error. Recall that the training error is computed as:

Classification Error = Number of incorrect classifications /

Total number of examples

By selecting a feature for the distribution, we reduce this error. Consider only two
possible features x[1] and x[2] , two classes + and - splitting as on the following
picture.

By selecting the x[1] feature and choosing the threshold correctly, we can divide the
examples as follows:

Tree Construction | FITPED AI

111

If we continued to build the tree further, we would actually increase its depth. For
example, we would select x[2] feature for the next division. The question remains
whether we could select x[1] and x[2] features again. In the case of numerical values,
we can, but with a different threshold value. By adding more depths, we would be
able to create a tree with an error equal to 0 in this example.

However, it is questionable whether such a deep tree, even with a classification error
equal to 0, is really a good machine learning model.

From the above example, it is clear that the classification error, in our case the
training error, decreases with the depth of the tree, i.e., deeper tree = lower training
error.

Tree Construction | FITPED AI

112

📝 5.1.2

Which of the following statements about decision tree depth and training error is
correct?

• Increasing the depth of the decision tree decreases the training error.
• A deeper decision tree always leads to better generalization.
• Features cannot be reused in a decision tree.
• A decision tree with zero training error is always the best model.

Tree Construction | FITPED AI

113

🕮 5.1.3

Overfitting

In the previous example, we found that the classification error decreases during
training.

But we know that the model we have created always needs to be evaluated. This
validation is done using examples that were not included in the creation of the model.
In the previous chapters, we talked about the training set and the test set, whereby a
model is built on the data from the training set and this model is validated using
examples from the test set. If we validate the generated trees of available depths
using test examples, we find that the error on the test examples will initially decrease,
but at a certain model complexity this test error will increase.

Tree Construction | FITPED AI

114

We call this phenomenon overfitting. You will also find terms such as adaptation,
exact copying or remodelling in the literature. Overfitting means that the model
estimates the training examples perfectly, but it can no longer generalize and it
estimates very poorly the examples other than the training ones.

📝 5.1.4

What is the phenomenon called when a model fits the training data perfectly but
performs poorly on unseen data?

• Overfitting
• Underfitting
• Generalization
• Regularization

🕮 5.1.5

Occam's razor

When building a machine learning model, one common issue is overfitting, where the
model performs perfectly on the training data but struggles with new, unseen data.
This occurs when the model becomes too complex, capturing not just the true
patterns but also noise in the data. In such cases, even if the training error is zero,
the model may not generalize well, leading to poor performance on the test set.

Tree Construction | FITPED AI

115

Therefore, the goal is not to minimize training error, but rather to minimize the testing
error, which reflects the model's ability to generalize to new examples.

A key principle that guides the creation of simpler and more effective models is
Occam's razor. This principle originates from William Occam, a philosopher and
logician who lived in the 14th century. Occam's Razor suggests that when faced with
multiple explanations for a phenomenon, the simplest one should be preferred. In the
context of decision trees, this principle advises that among models with similar
performance (i.e., similar classification errors), the simpler model should be chosen.
A simpler tree is not only easier to interpret and understand, but it is also less likely
to overfit the training data, leading to better generalization.

In practice, applying Occam's Razor means that when two decision trees have similar
test errors, the one with fewer branches or depths should be selected. This approach
balances model simplicity with performance, avoiding unnecessary complexity while
still achieving good predictive accuracy. By following Occam's Razor, we create
models that are easier to explain and less prone to overfitting, ultimately leading to
better results on new data.

📝 5.1.6

What is the main goal when creating a machine learning model?

• Minimize testing error
• Minimize training error
• Maximize model complexity
• Maximize training error

📝 5.1.7

Which of the following is an interpretation of Occam's razor when applied to decision
trees?

• The simpler decision tree should be chosen if it has similar performance to a
more complex one

• If two trees have similar performance, the one with more branches should be
chosen

• A complex tree is always better than a simple one
• Occam's Razor suggests choosing the more complex model

Tree Construction | FITPED AI

116

🕮 5.1.8

Simplest tree

When comparing decision trees, the question often arises: how can we determine
which tree is the simplest? While visually, the simplest tree may appear to have fewer
branches or nodes, it is important to note that for an algorithm, this visual evaluation
is much more complex. In reality, when we compare decision trees, they often look
very similar, making it difficult to judge which one is simpler based solely on
appearance.

To make this comparison, we need a numerical representation of the complexity of
the tree. The simplest tree is typically the one that minimizes complexity while still
achieving a low testing error. Various metrics can be used to quantify the complexity
of a decision tree. One common approach is to count the number of nodes and
branches in the tree, but this is not always sufficient, especially when the trees are
visually similar.

A more effective approach is to use metrics like tree depth and node purity. The
depth of a tree refers to how many levels (or splits) it has, while node purity measures
how homogenous the data is in each node. A tree with fewer levels and higher purity
in each node can be considered simpler. Another approach is to use the cost-
complexity pruning technique, which allows for the pruning of branches that do not
significantly improve the tree’s performance on the test set, effectively simplifying
the tree without increasing the error rate.

Ultimately, numerical metrics give us a way to objectively compare decision trees
and choose the one that strikes the best balance between simplicity and
performance.

Tree Construction | FITPED AI

117

📝 5.1.9

Which of the following metrics can be used to evaluate the complexity of a decision
tree?

• Tree depth
• Number of nodes and branches
• Number of features in the dataset
• Accuracy on the training set

5.2 Tree building

🕮 5.2.1

When building decision trees, the goal is to create a model that strikes the right
balance between complexity and accuracy. To achieve this, there are several
methods for constructing an ideal decision tree, ensuring it has acceptable error
while remaining simple enough to be interpretable and generalizable. These methods
generally fall into two categories: early stopping and pruning.

Early stopping is a technique where the learning algorithm is stopped before the
decision tree becomes too complex. The algorithm typically builds a tree by
recursively splitting the data based on the features. However, if the tree is allowed to
grow without any restrictions, it may become overly complex, leading to overfitting.
Early stopping helps to prevent this by halting the tree-building process before the
tree grows too deep or starts to capture too much noise in the data. This method
relies on setting parameters such as maximum depth or minimum samples per leaf,
limiting the tree’s complexity from the start.

Pruning involves simplifying a tree after it has already been built. During the tree
construction, the model may have created branches that do not contribute
significantly to its accuracy. Pruning removes or "cuts back" these branches to
reduce the tree’s complexity while retaining as much accuracy as possible. This can
be done using techniques like cost-complexity pruning or post-pruning, where the
tree is evaluated on the test data, and unimportant branches are pruned to minimize
the test error. Pruning helps to improve the generalization of the model, making it
less likely to overfit the training data.

Tree Construction | FITPED AI

118

📝 5.2.2

If we want to simplify the tree after its creation, this method calls:

• Pruning
• Early stopping
• Cross-validation
• Regularization

🕮 5.2.3

Maximum depth

When using early stopping to control the complexity of a decision tree, one of the
simplest and most common conditions is to set a maximum depth for the tree. The
maximum depth refers to the number of levels or splits the tree can have from the
root node to the deepest leaf. By limiting the depth, we can prevent the tree from
growing too large and complex, making it easier to interpret and reducing the risk of
overfitting.

Setting the maximum depth is particularly useful because it ensures that the tree
won’t continue to split until it perfectly fits the training data. This helps to create a
simpler model that is easier to visualize and understand. However, the challenge lies
in determining the appropriate depth. If the depth is too shallow, the tree may underfit
the data, meaning it won't capture enough complexity to make accurate predictions.
On the other hand, if the depth is too deep, the tree may overfit the training data,
capturing noise and making it less effective on unseen data.

To find the right balance, practitioners typically experiment with different depths and
evaluate the model’s performance on both the training and test sets. Cross-validation
is often used to select the best depth by finding the value that minimizes the test

Tree Construction | FITPED AI

119

error. Ultimately, the goal is to select a depth that maintains model simplicity without
sacrificing too much accuracy.

📝 5.2.4

What is the depth of the tree in the picture?

• tree depth = 3
• tree depth = 6
• tree depth = 1

📝 5.2.5

What does setting the maximum depth of a decision tree do?

• It limits how many times the tree can split
• It increases the complexity of the tree
• It guarantees zero training error
• It prevents the tree from overfitting

📝 5.2.6

Which of the following is a potential issue with setting the maximum depth of a
decision tree?

• If the depth is too shallow, the tree may underfit
• Setting the depth too high leads to simpler trees
• A deeper tree reduces interpretability
• A deeper tree guarantees better generalization

Tree Construction | FITPED AI

120

🕮 5.2.7

Early stopping

When building decision trees, selecting the appropriate maximum depth is often
challenging. Setting the depth too high or too low can impact the tree’s ability to
generalize well. One way to address this issue is to use a more dynamic approach
for stopping tree growth: monitoring the classification error at each possible node
expansion.

In this method, we check the classification error after every possible split in the tree.
If the error does not decrease or decreases very little, it is an indication that further
expansion may not improve the model’s performance. This strategy helps avoid
unnecessary complexity and prevents the model from overfitting the data. If the
classification error stagnates or worsens after a split, it is wise to stop building the
tree at that point, rather than continuing to add branches that will not contribute to
improved performance.

In the example in the figure we have a tree with depth 1. Its classification error is (1
+ 15 + 2) / 40 = 0.45

If we were to split the tree according to the Credit feature, the classification error
would be 18 / (22 + 18) = 0.45

Under the early stopping condition, we would no longer continue generating the tree
because the classification error would not decrease. This is an example of early
stopping based on error monitoring, where we stop further expansion when
additional splits do not contribute to improved classification accuracy.

Tree Construction | FITPED AI

121

📝 5.2.8

What is the main idea behind early stopping based on classification error?

• Stopping tree expansion when the classification error stops decreasing
• Continuing to build the tree until maximum depth is reached
• Evaluating the tree on the test set before expanding
• Allowing the tree to grow as deep as possible

🕮 5.2.9

Number of instances

Another important condition for early stopping in decision tree generation is based
on the number of instances (examples) in each node. As the tree grows, the number
of examples in each node typically decreases. If a node contains very few examples,
the predictions made by the tree may become unreliable. This is because small
numbers of instances lead to greater variability in the classification, which reduces
the confidence in the results.

The decision to stop tree generation when a node contains too few examples
depends on both the task and the dataset. What qualifies as a "small" number of
examples may vary: in some cases, a node with just 100 examples might be
considered too small, while in other cases, this number could be acceptable. As a
result, many tree generation algorithms allow you to set a minimum number of
instances in a node. Once the number of examples in a node falls below this
threshold, the algorithm will stop further splitting that node, regardless of whether
additional splits could potentially improve the tree's accuracy.

This approach helps to avoid overfitting, particularly in situations where the tree
might end up creating branches based on a very small subset of the data, which could
lead to unreliable and less generalizable models. By setting a reasonable threshold
for the minimum number of instances per node, you can ensure that the tree remains
robust and that splits are made based on enough data to provide meaningful results.

Tree Construction | FITPED AI

122

📝 5.2.10

Why is it important to stop tree generation when a node contains very few instances?

• Because the predictions for small nodes are often unreliable
• Because the tree would become too shallow
• Because the tree will become too deep
• Because splitting small nodes leads to overfitting

🕮 5.2.11

In decision tree generation, early stopping is a crucial strategy to prevent overfitting
and ensure that the tree remains interpretable and generalizable. There are several
approaches to achieving early termination of tree building, each with a specific
purpose. Let's review these key approaches:

• Setting the maximum tree depth - is common approach focused on limit the
depth of the tree. This is often done by setting a maximum depth, meaning
the tree will not grow beyond a certain number of levels. This method is
useful for ensuring the tree remains simple and easy to interpret. However,
choosing the optimal depth can be challenging and might require
experimentation.

Tree Construction | FITPED AI

123

• Stopping when classification error is not reduced monitor the classification
error during the tree-building process. If the error stops decreasing, or
decreases only marginally, further tree expansion may not improve the
model's performance. This is an indicator that the tree has reached its
optimal complexity and additional splits may lead to overfitting.

• Stopping when nodes contain too few examples - as the tree grows, the
number of examples in each node typically decreases. If a node contains too
few examples, its predictions become unreliable, and further splits may be
based on insufficient data. To avoid this, tree generation can be stopped
when a node contains fewer examples than a predefined threshold, ensuring
that the tree does not become too specific to small subsets of the data.

📝 5.2.12

What is overlearning or overfitting?

• A phenomenon where test error increases with model complexity.
• A phenomenon where test error decreases with model complexity.
• A phenomenon where the training error decreases with model complexity.
• A phenomenon where the training error increases with model complexity.

📝 5.2.13

"Among competing hypotheses, the one with the fewest assumptions should be
selected",

This statement is also called:

• The principle of Occam's Razor
• Simple existence principle
• Regression rule
• The principle of selection of assumptions

📝 5.2.14

Select the rules that can be applied to stop the generation of the decision tree, i.e.
the stopping condition.

• If all the features from the dataset have already been used
• If the classification error is not reduced by further development
• If there are only leaves in the tree that contain a number of examples less

than the set minimum of leaf for unfolding - min_samples_leaf

Tree Construction | FITPED AI

124

• If the GINI index of the whole tree is less than -1

5.3 Tree pruning

🕮 5.3.1

XOR problem

The early stopping conditions mentioned in the previous section belong among the
quick and easy approaches to prevent overlearning in decision trees.

For example, stopping tree generation, if the classification error does not decrease
appears to be a successful approach. Of course, this approach also has its limits. We
can demonstrate one concerning the XOR problem.

Consider four training examples that classify a target variable y for
features/attributes x[1] and x[2].

If we consider only these four training examples, the classification error of a
classifier that classifies all examples as True (or even False) will be 2 / (2 +2) = 0.5

Generating the tree and dividing by the attribute x[1], we get the following tree.

Tree Construction | FITPED AI

125

The classification error of this tree will be (1 + 1) / (2 +2) = 0.5

This means that the classification error has not decreased. If we stopped the tree
generation early, we would not continue with the tree generation in this case. The
final tree would look as follows:

Practically, we would not create any classifier.

However, if we further partition the tree according to the attribute x[2] we get the
following tree with zero classification error.

Tree Construction | FITPED AI

126

The example above illustrates the problem of the early stopping approach.

To overcome this limitation, we can use pruning, which is the process of simplifying
the tree after it has been fully grown. Pruning allows us to create a tree that balances
complexity and performance by removing parts of the tree that do not significantly
improve classification accuracy.

📝 5.3.2

What is a potential issue with using early stopping based on classification error in
decision tree generation?

• The tree might stop growing before it reaches the optimal depth
• The tree may become too simple and underfitting occurs
• The tree will always be able to perfectly classify all training examples
• Early stopping always leads to overfitting

Tree Construction | FITPED AI

127

📝 5.3.3

Consider two decision trees

Tree A:

Tree B:

Which one of the above trees is simpler?

• Tree B
• Tree A
• Equal

🕮 5.3.4

Pruning

Pruning is a technique used in decision tree generation where we initially train a
complex tree and then simplify it later to avoid overfitting. The key idea behind
pruning is that we want a model that generalizes well, which means finding the right
balance between complexity and accuracy. In the case of different tree depths, it is

Tree Construction | FITPED AI

128

not difficult to determine which of two trees is simpler. In the case of trees with the
same depth, it is a more serious problem.

There are several metrics to determine the complexity of a tree. In our examples, we
will consider the number of leaves.

For example, consider the following trees.

We express the number of nodes of the tree using the L variable.

• The number of nodes of the first tree S1 will be L(S1) = 5
• The number of nodes of the second tree S2 will be L(S2) = 2

By simple comparison, we find that the second tree is simpler, i.e., the first tree is
more complex. Importantly, while it is obvious to a human observer which of the two
trees is more complex, by expressing the node count metric, it is possible for the
algorithm to detect the complexity of the tree as well.

📝 5.3.5

What is the main goal of pruning in decision trees?

• To train a complex tree and simplify it later to avoid overfitting

Tree Construction | FITPED AI

129

• To create a tree with more leaves for better accuracy
• To train a shallow tree without any need for simplification
• To stop tree generation once the training error reaches zero

🕮 5.3.6

Total cost function

In decision tree pruning, it's important to strike a balance between two key factors:

• how well the tree predicts data (its performance)
• how simple or complex the tree is {its complexity).

Achieving this balance ensures that we do not overfit the model or make it too
simplistic, potentially underfitting the data.

To balance these two aspects, we use a total cost function. This function combines
the performance of the tree (often measured by classification error) and its
complexity (typically measured by the number of leaves). The performance metric,
like classification error, quantifies how accurately the tree classifies examples, while
the complexity is measured by the number of leaves or nodes.

The total cost function can be expressed by various ways:

We calculate it as

Total Cost = Measure of Fit + Measure of Complexity

where pas a measure of fit, we use a tree performance metric, e.g., classification
error, and as a measure of complexity, the number of leaves in the tree.

Therefore, the formula can also be understood as follows:

Total Cost = Classification Error + Number of Leaf Nodes

or more appropriately, it can be expressed as follows:

Total Cost = Classification Error + λ × Number of Leaves

In this formula, λ (lambda) is a constant that adjusts the impact of the number of
leaves on the total cost. This constant is crucial because the classification error is a
value between 0 and 1, while the number of leaves is a positive integer. By using λ,
we transform the number of leaves into a comparable range (0, 1), ensuring that both
the error and complexity are on the same scale and can be properly balanced.

Tree Construction | FITPED AI

130

This allows us to choose a tree that doesn't just fit the training data well but also
generalizes effectively to new, unseen data, avoiding both underfitting and
overfitting.

📝 5.3.7

How the so-called Total cost is calculated for the decision tree

• as the sum of the classification accuracy metric and the model complexity
metric

• as the difference of the classification accuracy metric and the model
complexity metric

• as a proportion of the classification accuracy metric and the model
complexity metric

• as the sum of the classification accuracy metric and the dataset balance
metric

• as the difference of the classification accuracy metric and the dataset
balance metric

• as a proportion of the classification accuracy metric and the dataset balance
metric

📝 5.3.8

Why is the constant λ important in the total cost function for pruning decision trees?

• It ensures the number of leaves is on the same scale as the classification
error

• It helps calculate the classification error
• It determines the maximum tree depth
• It adjusts the complexity of the training dataset

📝 5.3.9

What are the two key factors that need to be balanced in decision tree pruning?

• Tree performance and complexity
• Training error and model depth
• Number of nodes and classification accuracy
• Model complexity and training time

Tree Construction | FITPED AI

131

🕮 5.3.10

The tree pruning algorithm

The tree pruning algorithm is a key process in simplifying a decision tree while
maintaining or improving its predictive accuracy. The goal of pruning is to remove
unnecessary complexity by eliminating nodes that do not contribute significantly to
the tree's performance. Below is the step-by-step approach to tree pruning:

Step1 - Create a complete decision tree

• Begin by constructing a decision tree without any pruning. This tree will
typically be complex and may overfit the training data, capturing noise and
unnecessary patterns.

Step 2 - Identify a candidate node for removal

• Once the full tree is created, look for nodes that might not contribute
significantly to the model's performance. These are potential candidates for
removal.

Tree Construction | FITPED AI

132

Step 3 - Calculate the total cost

• For each candidate node, calculate the total cost with the candidate for
removal T and without candidate for removal Tsmaller according to the formula:

C(T) = Error(T) + λ × L(T)

The total costs in our case look as follows

Step 4 - Compare the total cost

• If the total cost decreases after removing the candidate node, then proceed
with the removal. This indicates that the tree has become simpler without a
significant loss in predictive accuracy.

Step 5 - Repeat steps 2 - 4 for each node in the tree

• Continue the pruning process by repeating steps 2 through 4 for each node
in the tree, until no further nodes can be removed without increasing the total
cost.

Tree Construction | FITPED AI

133

📝 5.3.11

What is the main goal of the tree pruning algorithm?

• To reduce the tree’s complexity without significantly increasing the error
• To make the tree deeper
• To calculate the training error
• To eliminate features from the dataset

🕮 5.3.12

At the end, we will discuss a more elaborate decision tree pruning algorithm, which
helps in simplifying the tree while ensuring that it maintains its predictive accuracy.
The goal is to reduce the tree's complexity and prevent overfitting without sacrificing
performance.

The pruning algorithm works by starting at the bottom of the tree and moving upward.
It applies the prune_split function to each decision node (denoted as M) in the tree.
The steps of the pruning process are as follows:

• Start at the bottom of the tree and move upwards - the algorithm begins at
the leaf nodes and progresses towards the root, checking each decision
node for possible pruning. This process helps to reduce complexity by
removing unnecessary branches.

• Apply the prune_split function to each decision node M - the prune_split
function is applied to each node in the tree to evaluate whether pruning it
would improve the overall tree performance.

• Calculate the total cost of the tree T - for the original tree, calculate the total
cost using the formula: C(T) = error(T) + λ × L(T)

• Prune the subtree from node M - after pruning the subtree at node M, the
tree becomes smaller. We calculate the new total cost for the pruned tree
(Tsmaller) using the same formula: C(Tsmaller) = error(Tsmaller) + λ × L(Tsmaller)

Tree Construction | FITPED AI

134

• Compare the total costs - if the total cost of the pruned tree (C(Tsmaller)) is less
than the total cost of the original tree (C(T)), then the pruning is beneficial,
and we prune the tree to create Tsmaller.

• Repeat for all decision nodes - this process is repeated for each decision
node, moving upwards through the tree, until no further beneficial pruning
can be made.

📝 5.3.13

Which of the following is used in the pruning algorithm to evaluate the performance
of the tree before and after pruning?

• Classification error and the number of leaves
• Classification error and training set size
• Number of leaves and depth of the tree
• Classification error and the number of features

5.4 Missing (incomplete) data

🕮 5.4.1

Incomplete data

In real-world machine learning tasks, handling incomplete data is a common and
challenging problem. Datasets are rarely perfect and often contain missing values.
These gaps in the data can arise due to various reasons, such as errors during data
collection, privacy concerns, or the unavailability of certain features for specific
instances.

An example of incomplete data can be seen in the case of a bank’s customer dataset.
Consider a situation where the bank has a set of customers who have been offered
loans, while others only maintain accounts with the bank. One key column in this
dataset might be the "maturity date" for the loans, which will obviously be missing
for customers who did not take out loans. However, the bank still has valuable
information about the customers who did not use credit services. This information
could include details like account balance, transaction history, and customer
demographics.

The challenge is how to effectively handle this incomplete data. For machine learning
algorithms to make accurate predictions, it’s crucial that missing data is either
handled or appropriately imputed. Ignoring or discarding instances with missing data
might lead to biased models or loss of valuable information.

Tree Construction | FITPED AI

135

Various techniques can be employed to address this issue, such as:

1. Imputation fills in missing values with estimated or predicted values based
on other features in the dataset.

2. Omitting missing data removes rows or columns with missing data, though
this can lead to loss of information.

3. Using algorithms that handle missing data - some machine learning
algorithms can directly handle missing data during model training, such as
decision trees.

📝 5.4.2

What is one of the main challenges in real-world machine learning tasks regarding
datasets?

• Datasets are incomplete and contain missing values
• Datasets are always too small
• Datasets always have too many features
• Datasets always have balanced classes

🕮 5.4.3

Approach 1 (Remove missing data)

One common approach to handling missing data is to simply disregard or remove
the examples (rows) or attributes (columns) with missing values. This method can
be useful when only a small percentage of the dataset is incomplete. For instance, if
only a few rows or attributes have missing data, removing these might not have a
significant impact on the model’s performance or the dataset's overall integrity.

Tree Construction | FITPED AI

136

However, this approach can become problematic if a substantial portion of the
dataset is missing information. For example, if 50% of the records in the dataset are
missing an important attribute, simply removing those examples could significantly
reduce the amount of usable data. This reduction can lead to biased models, as the
model may not represent the diversity of the data accurately.

There are some advantages to removing examples or attributes with missing data:

1. Simplicity - this approach is straightforward to implement and easy to
understand.

2. Universality - it can be applied to virtually any type of machine learning
model, including decision trees, logistic regression, and linear regression.

However, the disadvantages should also be considered:

1. Loss of information - removing data points or attributes can remove valuable
information, reducing the overall predictive power of the model.

2. When to remove - it is not always clear when it’s better to remove rows
(examples) or columns (features/attributes), especially when the missing
data is distributed unevenly across the dataset.

3. Impact on model updates - if a model is updated with new data, missing
input data could become a problem again, affecting the model's ability to
make predictions effectively.

While removing incomplete data can be a quick fix, it should be applied cautiously,
particularly when a large portion of the data is missing.

📝 5.4.4

What is a potential disadvantage of removing examples or attributes with missing
data?

• It may result in loss of important information
• It simplifies the model too much
• It always improves the model's performance
• It makes the dataset larger

Tree Construction | FITPED AI

137

🕮 5.4.5

Approach 2 (Data imputation)

Another common approach to handling missing data is data imputation, where the
missing values are filled in with estimates. This is particularly useful when dealing
with missing data in features or columns, as it helps preserve the dataset’s size and
ensures that the model can still use all available information.

There are several methods for imputation, and the choice of method depends on the
nature of the data and the distribution of the values. Some common imputation
techniques include:

1. Filling with the most frequent value - for categorical features, one of the
simplest methods is to replace the missing values with the most frequent
value, or mode, in the column. This approach works well when the missing
values are not randomly distributed, but it may not always capture the
underlying patterns in the data.

2. Filling with the mean or median - for numerical data, filling missing values
with the mean or median of the available data in the feature is a common
strategy. The mean is typically used when the data is approximately normally
distributed, while the median is preferred when the data has outliers or is
skewed. The median is less sensitive to extreme values, making it more
robust in many cases.

3. Interpolation - in some cases, especially for time-series data, interpolation
can be used to estimate missing values based on the surrounding values.
This can be linear interpolation or other forms, such as polynomial
interpolation, depending on the data's structure.

4. Predictive modeling - for more complex scenarios, a model can be trained to
predict the missing values based on the relationship between the missing
attribute and other available attributes. This method can be more accurate
but also more computationally expensive.

Tree Construction | FITPED AI

138

Each of these methods has its advantages and limitations, and the choice of
imputation method should be based on the data type, distribution, and the extent of
missingness. Imputation is generally preferred when retaining all the examples in the
dataset is important, and it avoids the risk of losing too much data, as could happen
when removing examples with missing values.

📝 5.4.6

Which method is commonly used for imputing missing values in categorical
features?

• Filling with the most frequent value
• Filling with the mean
• Interpolation
• Predictive modeling

📝 5.4.7

Which of the following imputation methods is typically used for numerical data with
outliers?

• Filling with the median
• Filling with the mean
• Interpolation
• Filling with the most frequent value

🕮 5.4.8

Approach 3 (Set unknown value)

A third approach for handling missing data is to reason with the missing data. This
strategy can be particularly helpful when the missing data represents a specific
situation, such as an unknown or unrecorded value, and can be treated as a valid
category rather than attempting to estimate it based on other data points.

One simple way to apply this reasoning is by assigning a special value to missing
data, such as "unknown" or "missing." This method is particularly useful when the
absence of a value carries meaning or can be treated as a distinct category within
the dataset. For example, in a customer dataset for a bank, if certain customers do
not provide their income information, instead of discarding those records or filling in

Tree Construction | FITPED AI

139

the missing values, we could assign the value "unknown" to represent missing
income data.

This approach is often used when:

• The missing values represent a specific category that has meaning, such as
missing preferences, unrecorded transactions, or unknown responses.

• It is important for the model to recognize that certain data points are
deliberately missing or unknown, and not necessarily a random omission.

Advantages of reasoning with missing data:

• It preserves all records without imputation, thus preventing loss of valuable
data.

• It allows the model to treat the missing data as a separate class or category,
which can sometimes reveal insights into the patterns of missingness.

• It avoids potential bias introduced by incorrect imputations or assumptions
about the missing data.

Disadvantages:

• It may introduce additional complexity into the model by adding a new
category (e.g., "unknown") which could affect classification or prediction
tasks.

• It assumes that missing data is not random, but rather has some meaningful
underlying reason for its absence. If this assumption is incorrect, the model
could be misled.

Tree Construction | FITPED AI

140

📝 5.4.9

What is the main advantage of adding a special value like "unknown" to missing data?

• It helps in maintaining the dataset's integrity by not discarding any records.
• It allows for a more accurate imputation of missing values.
• It prevents bias introduced by random missingness.
• It increases the computational cost of model training.

📝 5.4.10

Which of the following would be an appropriate use of adding a special value like
"unknown" to missing data?

• When missing data represents a meaningful category or class, such as
unknown customer preferences.

• When missing data is truly random and has no specific pattern.
• When numerical values are missing and should be replaced by the mean or

median.
• When missing data represents an error that should be ignored.

5.5 Practical tasks

📝 5.5.1

Project: Decision tree optimization

Create a decision tree using Titanic data without setting the depth of the tree. Later
create more suitable decision tree.

• Dataset: https://priscilla.fitped.eu/data/pandas/titanic.csv

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

Load the Titanic dataset from a URL into a pandas DataFrame

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

https://priscilla.fitped.eu/data/pandas/titanic.csv

Tree Construction | FITPED AI

141

Select relevant columns from the dataset for the model

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

Drop rows with missing values (NaN) to ensure the model

doesn't encounter incomplete data

data = data.dropna()

Convert the categorical 'Embarked' column into

dummy/indicator variables (one-hot encoding)

drop_first=False ensures that the original column isn't

dropped, keeping all categories for analysis

data = pd.get_dummies(data, columns=["Embarked"],

drop_first=False)

Replace 'male' and 'female' values in 'Sex' column with

numeric values: 'male' -> 0, 'female' -> 1

Explicitly cast 'Sex' column to int after replacement to

avoid deprecation warning

s = Series(['male', 'female'])

replace_dict = {'male': '0', 'female': '1'} # replacements

maintain original types

data['Sex'] = data['Sex'].replace(replace_dict)

pd.set_option('future.no_silent_downcasting', True)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

Split the data into features (X) and target (y)

X = data[data.columns.difference(['Survived'])] # All columns

except 'Survived'

y = data['Survived'] # 'Survived' is the target variable

Split the data into training and testing sets, with 20% of

the data for testing

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Initialize the Decision Tree Classifier with a fixed random

state for reproducibility

clf = DecisionTreeClassifier(random_state=42)

Train the classifier on the training data

clf = clf.fit(X_train, y_train)

Tree Construction | FITPED AI

142

Use the trained model to predict the target variable on the

testing data

y_pred = clf.predict(X_test)

Import the metrics module to evaluate the model's

performance

from sklearn import metrics

Calculate the accuracy of the model by comparing predicted

values with actual values

acc = metrics.accuracy_score(y_test, y_pred)

Print the accuracy score

print("Accuracy:", acc)

Program output:
Accuracy: 0.7342657342657343

Find the depth of the generated tree.

print(clf.get_depth())

Program output:
17

The original tree has a depth of 17. Next, we find out how many leaves the tree has.

print(clf.get_n_leaves())

Program output:
151

The tree has up to 151 leaves. Based on the depth and number of leaves, we can
conclude that this tree is complex given the number of data from which it is trained.

 To confirm the reasoning, let us list all the accuracies of the tree using depths from
1 to 17.

Loop through different tree depths (from 1 to 17)

for i in range(1, 18):

Tree Construction | FITPED AI

143

 # Initialize a DecisionTreeClassifier with the current

max_depth

 dtree = DecisionTreeClassifier(max_depth=i,

random_state=42)

 # Fit the decision tree model to the training data

(X_train and y_train)

 dtree.fit(X_train, y_train)

 # Predict the target variable (y_test) using the trained

model

 y_pred = dtree.predict(X_test)

 # Print the current tree depth and the accuracy of the

predictions on the test set

 print('Depth: ', i, ' accuracy:',

metrics.accuracy_score(y_test, y_pred))

Program output:
Depth: 1 accuracy: 0.7482517482517482

Depth: 2 accuracy: 0.7482517482517482

Depth: 3 accuracy: 0.7272727272727273

Depth: 4 accuracy: 0.7482517482517482

Depth: 5 accuracy: 0.7832167832167832

Depth: 6 accuracy: 0.7342657342657343

Depth: 7 accuracy: 0.7762237762237763

Depth: 8 accuracy: 0.7342657342657343

Depth: 9 accuracy: 0.7412587412587412

Depth: 10 accuracy: 0.7272727272727273

Depth: 11 accuracy: 0.7132867132867133

Depth: 12 accuracy: 0.7342657342657343

Depth: 13 accuracy: 0.7412587412587412

Depth: 14 accuracy: 0.7342657342657343

Depth: 15 accuracy: 0.7482517482517482

Depth: 16 accuracy: 0.7412587412587412

Depth: 17 accuracy: 0.7342657342657343

At depth 5, the tree is 4% more accurate on the test data than at the original depth of
17. We pruned the tree, it is less complex and yet more accurate. We have prevented
the tree from overtraining.

Such a tree also has a smaller number of leaves, only 22.

Tree Construction | FITPED AI

144

Initialize the DecisionTreeClassifier with max_depth set to

5 and random_state for reproducibility

dtree = DecisionTreeClassifier(max_depth=5, random_state=42)

Fit the decision tree model to the training data

dtree.fit(X_train, y_train)

Get and print the number of leaves in the decision tree

print(dtree.get_n_leaves())

Program output:
22

Another way to prevent overtraining is by using total impurity sheets and the so-
called effective alpha tree (https://scikit-
learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html).

So-called minimal cost complexity pruning recursively finds the weakest node. This
is characterized by the effective alpha, and the nodes with the smallest effective
alpha are pruned first.

The sklearn library provides a cost_complexity_pruning_path function whose return
value is the effective alpha and the corresponding total leaf impurity.

As the alpha value increases, more of the tree is pruned, increasing the total impurity
of leaves.

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_breast_cancer

from sklearn.tree import DecisionTreeClassifier

Load the breast cancer dataset

X, y = load_breast_cancer(return_X_y=True)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

random_state=0)

Create a decision tree classifier

clf = DecisionTreeClassifier(random_state=0)

Compute the cost-complexity pruning path

path = clf.cost_complexity_pruning_path(X_train, y_train)

https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html

Tree Construction | FITPED AI

145

Extract the alpha values and impurities from the pruning

path

ccp_alphas, impurities = path.ccp_alphas, path.impurities

Create a plot to visualize the pruning path

fig, ax = plt.subplots()

Plot the total impurity of leaves as a function of effective

alpha

ax.plot(ccp_alphas[:-1], impurities[:-1], marker="o",

drawstyle="steps-post")

Label the axes and set the title

ax.set_xlabel("effective alpha")

ax.set_ylabel("total impurity of leaves")

ax.set_title("Total Impurity vs effective alpha for training

set")

Display the plot

plt.show()

Program output:
/home/johny/.local/lib/python3.9/site-

packages/matplotlib/projections/__init__.py:63: UserWarning:

Unable to import Axes3D. This may be due to multiple versions

of Matplotlib being installed (e.g. as a system package and as

a pip package). As a result, the 3D projection is not

available.

 warnings.warn("Unable to import Axes3D. This may be due to

multiple versions of "

Tree Construction | FITPED AI

146

We train a decision tree using the effective alpha. The last value in ccp_alpha is the
value that prunes the whole tree, clfs[-1] is the tree with one node.

Initialize an empty list to store decision tree classifiers

clfs = []

Loop through each value of ccp_alpha

for ccp_alpha in ccp_alphas:

 # Create a DecisionTreeClassifier with the current

ccp_alpha value

 clf = DecisionTreeClassifier(random_state=0,

ccp_alpha=ccp_alpha)

 # Train the classifier on the training data

 clf.fit(X_train, y_train)

 # Append the trained classifier to the list of classifiers

 clfs.append(clf)

Print the number of nodes in the last tree and the

corresponding ccp_alpha value

print(

 "Number of nodes in the last tree is: {} with ccp_alpha:

{}".format(

Tree Construction | FITPED AI

147

 clfs[-1].tree_.node_count, ccp_alphas[-1]

)

)

Program output:
Number of nodes in the last tree is: 1 with ccp_alpha:

0.3272984419327777

Remove the last element clfs and ccp_alha.

The following graphs show how the number of nodes and the depth of the tree
decreases with increasing alpha.

clfs = clfs[:-1]

ccp_alphas = ccp_alphas[:-1]

node_counts = [clf.tree_.node_count for clf in clfs]

depth = [clf.tree_.max_depth for clf in clfs]

fig, ax = plt.subplots(2, 1)

ax[0].plot(ccp_alphas, node_counts, marker="o",

drawstyle="steps-post")

ax[0].set_xlabel("alpha")

ax[0].set_ylabel("number of nodes")

ax[0].set_title("Number of nodes vs alpha")

ax[1].plot(ccp_alphas, depth, marker="o", drawstyle="steps-

post")

ax[1].set_xlabel("alpha")

ax[1].set_ylabel("depth of tree")

ax[1].set_title("Depth vs alpha")

fig.tight_layout()

Tree Construction | FITPED AI

148

Program output:

When ccp_alpha is set to zero and the other parameters are default, the tree is
retrained, resulting in 100% training accuracy and 88% testing accuracy.

As alpha increases, more of the tree is pruned, leading to better generalization. In the
following example, alpha is set to 0.015 to maximize testing accuracy.

train_scores = [clf.score(X_train, y_train) for clf in clfs]

test_scores = [clf.score(X_test, y_test) for clf in clfs]

fig, ax = plt.subplots()

ax.set_xlabel("alpha")

ax.set_ylabel("accuracy")

ax.set_title("Accuracy vs alpha for training and testing

sets")

ax.plot(ccp_alphas, train_scores, marker="o", label="train",

drawstyle="steps-post")

ax.plot(ccp_alphas, test_scores, marker="o", label="test",

drawstyle="steps-post")

ax.legend()

plt.show()

Tree Construction | FITPED AI

149

Program output:

📝 5.5.2

Complete the code so that it correctly calculates tree complexity and alpha.

_____ = DecisionTreeClassifier(random_state=0)

_____ = clf. _____ (X_train, y_train)

ccp_alphas, _____ = path. _____ , _____ .impurities

📝 5.5.3

Assign the correct functions.

- To obtain the depth of the decision tree, the following is used: _____

- To obtain the number of leaves in the decision tree, the following is used: _____

- To create a decision tree, the following is used: _____

- To train the decision tree, the following is used: _____

• .fit()
• .get_depth()
• .get_n_leaves()

Tree Construction | FITPED AI

150

• DecisionTreeClassifier()

⌨ 5.5.4 Maximum depth and number of leaves

Complete the code so that the tree has a maximum depth of 5 and list the number of
leaves of the tree.

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

data = data.dropna()

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

clf = DecisionTreeClassifier(random_state=42)

Metrics for Splitting
Decisions

Chapter 6

Metrics for Splitting Decisions | FITPED AI

152

6.1 GINI index

🕮 6.1.1

Best features

One of the critical steps in constructing a decision tree is choosing the most suitable
feature for splitting the data at each node. This selection impacts the tree's efficiency
and accuracy in making predictions. The algorithm considers all potential trees of
depth 1.

In the previous examples, we used classification error to find the most appropriate
feature.

The algorithm evaluates all potential splits by considering the features that result in
subsets with the least classification error. Classification error is calculated using the
formula:

Classification Error = Number of incorrect classifications /

Total number of examples

In simple terms, the classification error measures how well a feature splits the
dataset into groups that belong to a single class. A smaller classification error
indicates that the split is more effective in creating homogeneous subsets. For
example, a feature that perfectly divides the dataset into subsets containing only one
class would have a classification error of zero.

Metrics for Splitting Decisions | FITPED AI

153

This method involves the algorithm analyzing all possible trees of depth 1 (trees with
only one split). By comparing the classification errors of these trees, the algorithm
identifies the feature with the lowest error as the most appropriate for splitting. This
process ensures that the tree grows by successively reducing disorder in the data.

The concept of disorder in this context refers to how mixed the subsets are after the
split. Ideally, each subset should contain examples from only one class. The feature
that achieves this outcome is considered optimal for creating a more accurate
decision tree.

📝 6.1.2

What does the classification error indicate in the context of decision trees?

• The disorder of the subsets after splitting
• The size of the dataset
• The time complexity of the algorithm
• The number of features in the dataset

📝 6.1.3

Which statements are true about selecting the best feature in decision trees?

• A smaller classification error indicates a better feature for splitting.
• The classification error is calculated as incorrect classifications divided by

the total examples.
• The algorithm evaluates trees of depth 2 to determine the best feature.
• A feature with zero classification error creates subsets of mixed classes.

Metrics for Splitting Decisions | FITPED AI

154

📝 6.1.4

GINI index

Decision trees require a way to measure the impurity or disorder in the data to make
effective splits. While classification error can provide this measurement, it is often
too simplistic because it assumes a linear relationship. Instead, most decision tree
algorithms use more sophisticated metrics, such as information gain or the GINI
index, to evaluate splits.

The GINI index quantifies the probability of misclassifying a randomly chosen
element in a dataset based on its distribution across classes. In other words, it
evaluates how "pure" a subset is after a split. If all elements in the subset belong to
a single class, the subset is considered completely pure, and the GINI index is zero.
Conversely, if the elements are evenly distributed across multiple classes, the GINI
index approaches its maximum value of 0.5, reflecting maximal impurity.

The GINI index value ranges between 0 and 1:

• 0 - all elements belong to a single class (pure subset).
• 0.5 - elements are equally distributed among the classes.
• 1 - elements are completely randomly distributed across classes (complete

impurity).

The GINI index is calculated using the formula:

--- ERROR ---

Where pi represents the probability of an object being assigned to class i. By
minimizing the GINI index at each split, decision trees create subsets that are more
homogeneous, improving their predictive power.

📝 6.1.5

What does a GINI index of 0 indicate?

• All elements belong to a single class.
• Elements are randomly distributed among classes.
• The data is evenly split between two classes.
• No splits have been made yet.

Metrics for Splitting Decisions | FITPED AI

155

📝 6.1.6

Which statements about the GINI index are true?

• It measures the probability of misclassification.
• It is used to evaluate splits in decision trees.
• It has a linear relationship with impurity.
• A GINI index of 0.5 indicates maximum purity.

📝 6.1.7

Example

To understand the Gini index, let us walk through a practical example. Imagine a
dataset with 12 examples and two features: Account and Income. Our goal is to
determine which feature provides the best split for the dataset based on the target
variable (e.g., "Yes" or "No"). We do this by calculating and comparing the Gini index
for each feature.

We first compute the Gini index for the distribution under the Account features. The
Gini index will be the weighted average of the Gini indexes of each subset.

Giniaccount = weighted average(Gini)

For each subset, we will calculate the Gini index according to the formula above

• - where pi is the probability of an object being assigned to a particular class.

Metrics for Splitting Decisions | FITPED AI

156

Suppose the Account feature has three classes: High, Medium, and Low. We
calculate the Gini index for each class:

• Ginihigh = 1 - [(probability of "Yes")2 + (probability of "No")2]
• Ginimedium = 1 - [(probability of "Yes")2 + (probability of "No")2]
• Ginilow = 1 - [(probability of "Yes")2 + (probability of "No")2]

In the case of the Gini for the class High, where the examples are divided into 4 from
the value of the target variable Yes and 0 from the value of No, we calculate the Gini
as follows:

Ginihigh = 1 - [(probability of "Yes")2 + (probability of "No")2] =

Similarly, we calculate the Gini for the Medium and Low classes

The overall Gini index for the Account feature is the weighted average of the Gini
indexes of its subsets, based on the number of examples in each subset.

Similarly, calculate the Gini index for the Income feature using its subsets and
probabilities.

Finally, compare the Gini indexes for Account and Income. The feature with the lower
Gini index is the better choice for splitting the data. In this example, the Account
feature has a lower Gini index, making it the optimal choice for the split.

Metrics for Splitting Decisions | FITPED AI

157

📝 6.1.8

What is the weighted average Gini index of a feature used for?

• Selecting the best feature for the split.
• Determining the number of classes in the dataset.
• Calculating the impurity of a feature's subsets.
• Measuring the entropy of the data.

📝 6.1.9

Which statements about the Gini index are true?

• It is used to measure the impurity of data subsets.
• The Gini index is computed using probabilities of classes.
• A Gini index of 0 indicates maximum impurity.
• The feature with the higher Gini index is preferred for splitting.

6.2 Entropy

🕮 6.2.1

Entropy is a widely used measure to quantify impurity or disorder in a dataset.
Borrowed from physics, it characterizes the degree of uncertainty or impurity in a
system. In machine learning, entropy is a valuable metric to determine how well a
dataset is split based on a specific feature during the formation of decision trees.

Given a dataset S with two classes (positive and negative examples), entropy is
calculated as:

Entropy(S) = - pplog2pp - pnlog2pn

Metrics for Splitting Decisions | FITPED AI

158

Where:

• pp - proportion of positive examples in S.
• pn - proportion of negative examples in S.

Special rule: when pp or pn is zero, we define 0.log⁡2(0) = 0, ensuring the calculation
is valid.

Characteristics of Entropy:

• Perfect purity - if all examples in S belong to one class (e.g., all positive),
entropy is 0. For instance if pp = 1 and pn = 0: Entropy(S) = −1 ⋅ log⁡2(1) − 0 ⋅
log⁡2(0) = 0

• Maximum uncertainty - entropy reaches its maximum value of 1 when the
dataset has an equal number of positive and negative examples (pp = pn =
0.5).

• Intermediate values when the dataset has uneven proportions of positive
and negative examples, entropy lies between 0 and 1. For example, if 70% of
examples are positive (pp = 0.7) and 30% are negative (pn = 0.3), entropy will
reflect the degree of impurity.

Entropy helps in determining the best feature for splitting a dataset. Features that
result in subsets with lower entropy (i.e., greater purity) are preferred, as they
contribute to more effective classification.

By minimizing entropy at each decision node, we iteratively create a tree that splits
the data into increasingly homogeneous subsets.

📝 6.2.2

What does an entropy value of 0 indicate?

• All examples belong to a single class.
• Maximum disorder in the dataset.
• An equal number of positive and negative examples.
• Entropy cannot be zero.

📝 6.2.3

Which of the following statements about entropy are true?

Metrics for Splitting Decisions | FITPED AI

159

• Entropy measures the degree of impurity in a dataset.
• Entropy is used to identify the best feature for splitting datasets.
• Entropy is maximized when all examples are in one class.
• Entropy is 1 when the dataset has equal positive and negative examples.

📝 6.2.4

Non-binary entropy

Entropy is a key metric in decision tree algorithms to evaluate the impurity of data
splits. In the previous section, we introduced binary entropy, which is used for
datasets with two classes. However, when datasets have more than two classes, we
use a generalized form known as non-binary entropy.

Binary entropy is calculated for datasets with exactly two classes (e.g., positive and
negative examples) using the formula:

Entropy(S) = - pplog2pp - pnlog2pn

where pp is the proportion of positive examples in S and pn is the proportion of
negative examples in S.

This entropy value quantifies the disorder or uncertainty in the dataset. It is specific
to binary classification problems.

When a dataset has multiple classes (T>2), entropy is generalized to include all
possible classes. The formula becomes:

--- ERROR ---

Where:

• pt is a proportion of examples in class t relative to all classes T in the set H.
• T is total number of classes.

Non-binary entropy applies to datasets with multiple classes and accounts for the
proportions of all classes. Base of the Logarithm:is always 2 because entropy
measures the expected length of the encoding in bits. This aligns with the
information-theoretic basis of entropy.

• An entropy of 0 means complete purity; all examples belong to one class.
• Higher entropy values indicate greater impurity or uncertainty due to a more

balanced distribution across classes.

Metrics for Splitting Decisions | FITPED AI

160

Both binary and non-binary entropy are used to evaluate potential splits in decision
trees. The goal is to choose features that reduce entropy, creating subsets with
higher purity and more homogeneous classes.

📝 6.2.5

What does non-binary entropy measure?

• The impurity of data splits for multiple classes.
• The probability of positive examples in binary classification.
• The number of features in a dataset.
• The total number of examples in a dataset.

📝 6.2.6

Which of the following are true about entropy in decision trees?

• Binary entropy applies to datasets with two classes.
• Entropy is used to measure impurity in data splits.
• Non-binary entropy uses the base-10 logarithm.
• Non-binary entropy is calculated using all class proportions.

🕮 6.2.7

Entropy quantifies the disorder or impurity in a dataset and is a fundamental concept
in decision tree algorithms. Using a binary classification scenario, we can calculate
entropy to measure the randomness in a given set of elements. Consider a binary
entropy defined by the relation:

Entropy(S) = - pplog2pp - pnlog2pn

If we have a set R1 containing 6 elements "a" and 2 elements "b".

R1 = {a, a, a, a, a, a, b, b}

We calculate the entropy for this set as follows:

Entropy(R1) = -[6/8 * log2 6/8 + 2/8 * log2 2/8] = -(-0.3112 + (-0.5)) = 0.8112

Next, consider the set R2, which has the same ratio of elements, but more elements
of "b"

Metrics for Splitting Decisions | FITPED AI

161

R2 = {a, a, b, b, b, b, b, b}

Entropy(R2) = -[2/8 * log2 2/8 + 6/8 * log2 6/8] = -(-0.5 + (-0.3112)) = 0.8112

Note that the entropy rate is the same. Thus, for entropy, it is not important which
elements are more, what is important is the ratio of the number of elements in the
set.

Next, we can consider the sets R3 and R4 and their entropies.

R3 = {a, b, b, b, b, b, b, b}

R4 = {a, a, a, b, b, b, b, b}

Entropy(R3) = -[1/8 * log2 1/8 + 7/8 * log2 7/8] = -(-0.375 + (-0.1686)) = 0.5436

Entropy(R4) = -[3/8 * log2 3/8 + 5/8 * log2 5/8] = -(-0.5306 + (-0.42374)) = 0.9543

Note that the set R3 is more ordered, i.e. it contains most of the elements from "b"
and only one element from "a". Its entropy is therefore lower. Also note that the sets
R1 and R2 have two elements different, therefore their entropy is greater than the
entropy of R2 set, but less than the entropy of R4 set.

For completeness, we still present the calculation of the ideally ordered R5 set, i.e.,
the set with no impurity.

R5 = {a, a, a, a, a, a, a, a}

Entropy(R5) = -[8/8 * log2 8/8 + 0/8 * log2 0/8] = -(0 + 0) = 0

For comparison, we also present the most disordered set for 8 elements, the R6 set.

R5 = {a, a, a, a, b, b, b, b}

Entropy(R5) = -[4/8 * log2 4/8 + 4/8 * log2 4/8] = -(0.5*(-1) + 0.5*(-1)) = 1

Entropy increases with greater impurity in the dataset and decreases as the dataset
becomes more ordered. It is a critical measure for identifying the best splits in
decision tree algorithms.

📝 6.2.8

What does entropy measure in a dataset?

• The degree of disorder or impurity.
• The sum of positive and negative examples.

Metrics for Splitting Decisions | FITPED AI

162

• The total number of elements.
• The ratio of positive examples only.

📝 6.2.9

Which statements about entropy are correct?

• Entropy is 0 for an ideally ordered set.
• Entropy reaches its maximum when all classes are equally distributed.
• Entropy is independent of the proportions of classes in the dataset.
• Entropy values range from 0 to 1.

🕮 6.2.10

Practical example

Entropy measures the disorder or impurity in a dataset. Let’s apply the entropy
formula to a practical example involving a target variable Edible with 16 examples: 9
positive (+) and 7 negative (−).

We calculate the entropy for the Edible variable as follows:

EntropyEdible = -(9/16 * log2 9/16 + 7/16 * log2 7/16) = 0.9836

Metrics for Splitting Decisions | FITPED AI

163

The result of 0.9836 is a number very close to 1. Thus, it means that the set has a
high degree of disorder.

📝 6.2.11

Which are correct about the given entropy calculation?

• The target variable has more positive than negative examples.
• An entropy value of 0.98360.9836 suggests a balanced dataset.
• Entropy is calculated using base-10 logarithms.
• Entropy is directly proportional to the total number of examples.

6.3 Information Gain

📝 6.3.1

In decision tree algorithms, entropy plays a vital role in determining the most
appropriate attribute for splitting the dataset. However, entropy is not used directly;
instead, it is applied as part of the information gain measure.

Information gain quantifies the expected reduction in entropy resulting from the
distribution of examples based on a particular attribute. It helps identify the attribute
that best separates the dataset into distinct classes.

The Information Gain (S, A) for an attribute AAA with respect to a set of examples
SSS is defined as:

Where:

• Entropy(S) is an entropy of the dataset S.
• Values(A) is set of all possible values of attribute A.
• Sv - subset of S where attribute A has value v.
• ∣Sv∣/∣S∣ is proportion of examples in Sv.

Steps:

1. Calculate the total entropy of the entire dataset S.

Metrics for Splitting Decisions | FITPED AI

164

2. Split by attribute into subsets based on the values of attribute A.
3. Weighted entropy is calculated the entropy of each subset Sv, weighted by its

proportion ∣Sv∣/∣S∣.
4. Subtract weighted entropy of subsets from the total entropy to get the

information gain.

The attribute with the highest information gain is selected for splitting because it
provides the greatest reduction in uncertainty (disorder) in the dataset.

📝 6.3.2

What does the information gain measure in decision trees represent?

• The expected reduction in entropy after splitting on an attribute.
• The amount of disorder in the dataset.
• The proportion of examples in each class.
• The total entropy of the dataset.

📝 6.3.3

Which of the following are true about information gain?

• It requires entropy to be calculated.
• It helps select the best attribute for splitting.
• It is always a positive value.
• It is used to calculate the GINI index.

🕮 6.3.4

Example

In the previous section, we worked with the following dataset. We will show how to
calculate the information gain for an attribute, using the Size attribute in a dataset.
The target variable is Edible, with the 9 positive examples (+) and 7 negative
examples (-), for a total of 16 examples.

Metrics for Splitting Decisions | FITPED AI

165

In the previous section, we calculated the entropy for the target variable Edible:

Entropyedible = - (9/16 * log2 9/16 + 7/16 * log2 7/16) = 0.9836

When we split the dataset by the attribute Size, we obtain the following subsets:

• Subset for "small" contains 8 examples, with 6 positive (+) and 2 negative (-).
• Subset for "large" contains 8 examples, with 3 positive (+) and 5 negative (-).

We calculate the entropy for each subset:

Metrics for Splitting Decisions | FITPED AI

166

• Entropysize = small = - (6/8 * log2 6/8 + 2/8 * log2 2/8) = - (0.75 * log2 0.75 + 0.25
* log2 0.25) = 0.8113

• Entropysize = large = - (3/8 * log2 3/8 + 5/8 * log2 5/8) = 0.9544

The total entropy for the Size attribute is the weighted average of the entropies of its
subsets:

• Entropysize = 8/16 * 0.8113 + 8/16 * 0.9544 = 0.8828

Finally, we compute the information gain (or entropy reduction) of selecting the Size
attribute, which we compute as the reduction of the entropy of the original dataset
by the entropy of the Size attribute. The information gain is the reduction in entropy
after the split:

• InfGain(attrib) = Entropy(parent) - Entropy(attrib)
• InfGain(size) = Entropy(Edible) - Entropy(size) = 0.9836 - 0.8828 = 0.1008

So, we obtained 0.1008 bits of information about the dataset by selecting "size" as
the first branch of our decision tree.

📝 6.3.5

What does the information gain for the attribute "Size" indicate?

• The reduction in entropy due to splitting by "Size."
• The entropy of the dataset after splitting by "Size."
• The amount of disorder in the "Size" attribute.
• The weighted average entropy of all subsets.

📝 6.3.6

Which of the following are steps to calculate information gain?

• Compute the entropy of the entire dataset.
• Split the dataset by the attribute and compute subset entropies.
• Calculate the Gini index for the attribute.
• Use the ratio of classes to compute the weighted average entropy.

Metrics for Splitting Decisions | FITPED AI

167

📝 6.3.7

How is the probability of an object being assigned to a particular class calculated in
a dataset?

• By dividing the number of objects in a specific class by the total number of
objects in the dataset.

• By dividing the total number of objects in the dataset by the number of
classes.

• By multiplying the total number of objects in the dataset by the number of
classes.

• By using the logarithm of the total number of objects in a specific class.

6.4 How to use numeral values?

🕮 6.4.1

Decision trees are a versatile machine learning method capable of handling both
categorical and numeric (continuous) data. While previous examples have focused
on categorical data, it is essential to understand how decision trees process
continuous variables, whether in the target variable or the individual attributes.

When the target variable is continuous, decision trees are referred to as regression
trees. Unlike classification trees, which model nominal outcomes (e.g., "flu," "cold,"
"hypochondria"), regression trees predict a continuous outcome, such as blood
pressure or temperature. In this case, the predicted value at each leaf node is usually
the average of the target variable for the examples that fall into that node.

To determine the best split when working with continuous target variables,
regression trees use metrics like the standard deviation reduction (SDR). This metric
helps identify splits that minimize the variability within subsets, ensuring that the
resulting groups are as homogeneous as possible in terms of the target variable.

Continuous data can also appear in the individual attributes. The decision tree must
decide how to split the data what is typically achieved by choosing a threshold value
(e.g., "Age < 30") that maximizes information gain or minimizes the Gini index. The
splitting process transforms continuous attributes into binary splits, enabling the tree
to process them effectively.

Metrics for Splitting Decisions | FITPED AI

168

📝 6.4.2

What value do the regression trees model?

• continuous
• nominal
• categorical
• absent

📝 6.4.3

What is typically used as the node selection metric in regression trees?

• Standard Deviation Reduction
• Gini Index
• Information Gain
• Entropy

📝 6.4.4

How are splits typically handled for continuous attributes in decision trees?

• By transforming them into binary splits using thresholds.
• By selecting a threshold value that maximizes information gain or minimizes

impurity.
• By treating them as categorical data.
• By maximizing the standard deviation within subsets.

Metrics for Splitting Decisions | FITPED AI

169

🕮 6.4.5

Use of continuous values

Let's explore how decision trees handle continuous values in attributes, specifically
by calculating the Gini index. Consider the following dataset of loan applicants,
where the attribute Account is continuous.

The Account variable is continuous. It is possible to calculate the degree of disorder
for this attribute. In this example, we will use the Gini index as the measure of
disorder. Therefore, we will calculate the Gini index of the Account attribute.

The first step will be to sort the dataset according to the values of the attribute
Account.

In the second step, we calculate the average values of the individual data

Metrics for Splitting Decisions | FITPED AI

170

Next, we will calculate GINI for each distribution

Final Gini index for the column Account = 0.343. It is the lower Gini index of all
distributions of the dataset according to average values.

📝 6.4.6

What is the first step in calculating the Gini index for continuous attributes?

• Sort the attribute values in ascending order
• Calculate the Gini index for each subset
• Use average values as thresholds
• Split the dataset into two groups

Metrics for Splitting Decisions | FITPED AI

171

🕮 6.4.7

Review

When working with continuous attributes in decision trees, we need a method to split
the data at meaningful points based on the attribute's values. The Gini index is used
to measure the impurity or disorder in the dataset for each split. Below is a more
detailed explanation of how to calculate the Gini index for continuous attributes.

1. To begin, we sort the dataset by the continuous attribute in ascending order.
Sorting is essential because it allows us to consider different threshold values
between consecutive values for splitting the dataset.

2. Next, calculate the average values between consecutive attribute values. These
averages will be used as possible split points

3. Next, only the calculated average values are considered

4. For each split, calculate the Gini index for the resulting subsets. Finally, select the
best split by choosing the one with the lowest Gini index. The split that minimizes
the Gini index will be the most informative, as it leads to the greatest reduction in
impurity.

📝 6.4.8

Why do we calculate the average values between consecutive pairs of sorted
attribute values?

• To use them as thresholds for splitting the data
• To select the best subset

Metrics for Splitting Decisions | FITPED AI

172

• To calculate the Gini index for the entire dataset
• To sort the dataset

📝 6.4.9

What does the Gini index measure in decision trees?

• The impurity or disorder of the dataset
• The accuracy of the classification
• The number of positive examples
• The total size of the dataset

📝 6.4.10

Which split is selected in decision trees when using the Gini index?

• The split with the lowest Gini index
• The split with the highest Gini index
• The split with the most examples
• The split with the most distinct attribute values

6.5 Decission trees strengths and weaknesses

🕮 6.5.1

Decision trees are a popular machine learning method due to their simplicity and
interpretability. However, they also have certain limitations. Here, we summarize their
strengths and weaknesses.

Strengths:

• Understandable rules - becision trees generate rules that are easy to
interpret and explain.

• Low computational requirements for classification - once trained, decision
trees classify data quickly and efficiently.

• Versatility - decision trees can handle both continuous and categorical
variables.

• Feature importance - they clearly highlight the most important features used
for prediction or classification.

Metrics for Splitting Decisions | FITPED AI

173

Weaknesses:

• Decision trees may struggle with classification problems that have many
classes but relatively few training examples.

• High training cost:

1. computationally expensive because each potential split must be evaluated to
find the best one

2. in some cases, algorithms must search for the optimal combination of
weights for fields

3. pruning, which simplifies the tree, can also be complex as it requires forming
and comparing many candidate subtrees.

📝 6.5.2

What is one major strength of decision trees?

• They are easy to interpret and explain.
• They always achieve perfect accuracy.
• They require high computational power for classification.
• They are only applicable to categorical variables.

📝 6.5.3

Which of the following are the weaknesses of decision trees?

• They struggle with problems that have many classes and few training
examples.

• They cannot handle continuous variables.
• They cannot indicate the most important features for prediction.
• They require complex models for classification.

📝 6.5.4

Why can the training process for decision trees be computationally expensive?

• Each split candidate must be sorted and evaluated to find the best
distribution.

• The classification phase requires high computational resources.
• Decision trees require manual tuning at each step.
• Decision trees cannot handle pruning or optimization.

Metrics for Splitting Decisions | FITPED AI

174

📝 6.5.5

What is a key advantage of decision trees when compared to some other algorithms?

• They can work seamlessly with both categorical and continuous variables.
• They require no feature selection process.
• They can handle missing data better than all other algorithms.
• They always outperform ensemble methods.

6.6 Practical tasks

📝 6.6.1

Project: Titanic survival prediction

Use a decision tree algorithm to predict whether a person would survive the Titanic
based on features Pclass, Sex, Age, SibSp, Parch.

• Train the model using the Titanic dataset and split the data into training and
testing sets (70% train, 30% test).

• Evaluate the model's predictions on the test set and calculate its accuracy.

Dataset (copy): https://priscilla.fitped.eu/data/pandas/titanic.csv

We will create a decision tree that predicts whether or not a person would survive the
Titanic just like in the previous sections. Let's calculate the accuracy of this model.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

import warnings

warnings.filterwarnings('ignore')

Load Titanic dataset from the specified URL

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

Select relevant columns for the model

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

https://priscilla.fitped.eu/data/pandas/titanic.csv

Metrics for Splitting Decisions | FITPED AI

175

Remove rows with missing values to ensure clean data

data = data.dropna()

Convert the 'Sex' column to numerical format: male -> 0,

female -> 1

pd.set_option('future.no_silent_downcasting', True)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

Define features (X) by excluding the target variable

'Survived'

X = data[data.columns.difference(['Survived'])]

Define the target variable (y) as 'Survived'

y = data['Survived']

Split the dataset into training and testing sets (70% train,

30% test)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

Initialize the DecisionTreeClassifier with a fixed random

state for reproducibility

clf = DecisionTreeClassifier(random_state=42)

Train the classifier using the training data

clf = clf.fit(X_train, y_train)

Predict the survival outcomes for the test dataset

y_pred = clf.predict(X_test)

from sklearn.metrics import accuracy_score

Calculate and print the accuracy of the model

print(accuracy_score(y_test, y_pred))

Program output:
0.7767441860465116

We found out that 77.67 % of cases are classified correctly.

With the following code, we can visualize the tree.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

Metrics for Splitting Decisions | FITPED AI

176

_ = tree.plot_tree(clf,

 feature_names = ['Pclass', 'Sex', 'Age',

'SibSp', 'Parch'],

 class_names=['0','1'],

 filled=True)

Program output:

We can see that the tree is complex. Let's change the default criterion for building
the tree from gini to entropy and show the accuracy of the model.

Initialize a DecisionTreeClassifier using the Gini criterion

dtree = DecisionTreeClassifier(criterion='gini',

random_state=42)

Train the classifier on the training data

dtree.fit(X_train, y_train)

Predict the survival outcomes for the test dataset using

Gini

pred = dtree.predict(X_test)

Print the accuracy of the model using the Gini criterion

print('Criterion=gini', accuracy_score(y_test, pred))

Initialize a DecisionTreeClassifier using the Entropy

criterion

dtree = DecisionTreeClassifier(criterion='entropy',

random_state=42)

Train the classifier on the training data

dtree.fit(X_train, y_train)

Predict the survival outcomes for the test dataset using

Entropy

pred = dtree.predict(X_test)

Print the accuracy of the model using the Entropy criterion

print('Criterion=entropy', accuracy_score(y_test, pred))

Metrics for Splitting Decisions | FITPED AI

177

Program output:
Criterion=gini 0.7767441860465116

Criterion=entropy 0.7767441860465116

With gini (the default criterion for generating the tree) the accuracy is 77.67 %, and
with entropy the accuracy is also 77.67 %.

• Let's see whether pruning the tree by changing the maximum depth of the
tree gives us better results in any scenario.

• Let's create trees sequentially from depth 1 to 15 and visualize the results.

Initialize lists to store the max_depth values and

corresponding accuracies

max_depth = []

acc_gini = []

acc_entropy = []

Iterate over a range of max_depth values from 1 to 14

for i in range(1, 15):

 # Create and train a DecisionTreeClassifier using Gini

criterion with the current max_depth

 dtree = DecisionTreeClassifier(criterion='gini',

max_depth=i, random_state=42)

 dtree.fit(X_train, y_train)

 # Predict outcomes on the test set and append the accuracy

to acc_gini

 pred = dtree.predict(X_test)

 acc_gini.append(accuracy_score(y_test, pred))

 ####

 # Create and train a DecisionTreeClassifier using Entropy

criterion with the current max_depth

 dtree = DecisionTreeClassifier(criterion='entropy',

max_depth=i, random_state=42)

 dtree.fit(X_train, y_train)

 # Predict outcomes on the test set and append the accuracy

to acc_entropy

 pred = dtree.predict(X_test)

 acc_entropy.append(accuracy_score(y_test, pred))

 ####

 # Append the current max_depth value to the max_depth list

Metrics for Splitting Decisions | FITPED AI

178

 max_depth.append(i)

Combine the results into a DataFrame for visualization

d = pd.DataFrame({

 'acc_gini': pd.Series(acc_gini),

 'acc_entropy': pd.Series(acc_entropy),

 'max_depth': pd.Series(max_depth)

})

Visualize the accuracy as a function of max_depth for both

criteria

plt.plot('max_depth', 'acc_gini', data=d, label='Gini') #

Plot accuracy for Gini

plt.plot('max_depth', 'acc_entropy', data=d, label='Entropy')

Plot accuracy for Entropy

plt.xlabel('max_depth') # Label x-axis as max_depth

plt.ylabel('accuracy') # Label y-axis as accuracy

plt.legend() # Add a legend to distinguish Gini and Entropy

plots

plt.show() # Display the plot

Program output:

On this graph we can see that by choosing entropy and tree depth of 7, we get the
best accuracy of the model. Let's calculate the accuracy of the mentioned model.

Metrics for Splitting Decisions | FITPED AI

179

Initialize the DecisionTreeClassifier with 'entropy' as the

criterion and max_depth set to 8

clf = DecisionTreeClassifier(criterion='entropy', max_depth=8,

random_state=42)

Fit the model to the training data

clf = clf.fit(X_train, y_train)

Predict outcomes on the test set

y_pred = clf.predict(X_test)

Calculate and print the accuracy of the predictions

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test, y_pred)) # Display the accuracy

score

Program output:
0.7906976744186046

The accuracy of a decision tree with a depth of 8 and built by entropy has reached
79.07%. We increased the accuracy of the model by 1.4 % just by setting the function
to create tree branches and limiting the depth of the tree. The built tree is less
complex.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

_ = tree.plot_tree(clf,

 feature_names = ['Pclass', 'Sex', 'Age',

'SibSp', 'Parch'],

 class_names=['0','1'],

 filled=True)

Metrics for Splitting Decisions | FITPED AI

180

Program output:

⌨ 6.6.2 Number of leaves after pruning

Find the number of leaves before and after pruning the tree and print it. Use the
creation of a decision tree:

DecisionTreeClassifier(criterion = 'entropy', max_depth = 8,

random_state=42)

Print 2 values divided with a space

Create the trees with parameter of random_state=42

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

Metrics for Splitting Decisions | FITPED AI

181

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

📝 6.6.3

What setting of the decision tree would you use based on the following graph?

clf = DecisionTreeClassifier(criterion='gini', max_depth=10,

random_state = 42)

clf = DecisionTreeClassifier(criterion='gini', max_depth=8,

random_state = 42)

clf = DecisionTreeClassifier(criterion='entropy',

max_depth=10, random_state = 42)

clf = DecisionTreeClassifier(criterion='entropy', max_depth=8,

random_state = 42)

📝 6.6.4

Project: Regression decision tree

Create a regression decision tree to predict the age of an opossum based on its
features, such as hdlngth, skullw, totlngth, taill, footlgth, earconch, eye, chest, belly.
Use a dataset with these characteristics, split it into training and testing sets, and
train the model.

Metrics for Splitting Decisions | FITPED AI

182

Dataset:

• original: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly,
C. F. 1995. Morphological variation among columns of the mountain
brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupialia).
Australian Journal of Zoology 43: 449-458.

• local: https://priscilla.fitped.eu/data/machine_learning/possum.csv

import pandas as pd

import warnings

warnings.filterwarnings('ignore')

Load the dataset from the given URL into a pandas DataFrame

df =

pd.read_csv('https://priscilla.fitped.eu/data/machine_learning

/possum.csv')

Display the first few rows of the dataset to inspect its

structure and contents

print(df)

Print the information about the dataset, including column

names, non-null values, and data types

print(df.info())

Program output:
 case site Pop sex age hdlngth skullw totlngth

taill footlgth \

0 1 1 Vic m 8.0 94.1 60.4 89.0

36.0 74.5

1 2 1 Vic f 6.0 92.5 57.6 91.5

36.5 72.5

2 3 1 Vic f 6.0 94.0 60.0 95.5

39.0 75.4

3 4 1 Vic f 6.0 93.2 57.1 92.0

38.0 76.1

4 5 1 Vic f 2.0 91.5 56.3 85.5

36.0 71.0

..

... ...

99 100 7 other m 1.0 89.5 56.0 81.5

36.5 66.0

100 101 7 other m 1.0 88.6 54.7 82.5

39.0 64.4

https://priscilla.fitped.eu/data/machine_learning/possum.csv

Metrics for Splitting Decisions | FITPED AI

183

101 102 7 other f 6.0 92.4 55.0 89.0

38.0 63.5

102 103 7 other m 4.0 91.5 55.2 82.5

36.5 62.9

103 104 7 other f 3.0 93.6 59.9 89.0

40.0 67.6

 earconch eye chest belly

0 54.5 15.2 28.0 36.0

1 51.2 16.0 28.5 33.0

2 51.9 15.5 30.0 34.0

3 52.2 15.2 28.0 34.0

4 53.2 15.1 28.5 33.0

..

99 46.8 14.8 23.0 27.0

100 48.0 14.0 25.0 33.0

101 45.4 13.0 25.0 30.0

102 45.9 15.4 25.0 29.0

103 46.0 14.8 28.5 33.5

[104 rows x 14 columns]

RangeIndex: 104 entries, 0 to 103

Data columns (total 14 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 case 104 non-null int64

 1 site 104 non-null int64

 2 Pop 104 non-null object

 3 sex 104 non-null object

 4 age 102 non-null float64

 5 hdlngth 104 non-null float64

 6 skullw 104 non-null float64

 7 totlngth 104 non-null float64

 8 taill 104 non-null float64

 9 footlgth 103 non-null float64

 10 earconch 104 non-null float64

 11 eye 104 non-null float64

 12 chest 104 non-null float64

 13 belly 104 non-null float64

dtypes: float64(10), int64(2), object(2)

memory usage: 11.5+ KB

None

Metrics for Splitting Decisions | FITPED AI

184

The data file contains records about 104 opossums. The records contain the age of
the opossum, sex, length of the head, legs, etc.

For age feature, 2 data are missing and for footlgth feature one data is missing, we
will remove these records.

Remove rows with any missing values from the dataset

df = df.dropna()

Print the updated dataset information to confirm that no

missing values remain

print(df.info())

Program output:

Index: 101 entries, 0 to 103

Data columns (total 14 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 case 101 non-null int64

 1 site 101 non-null int64

 2 Pop 101 non-null object

 3 sex 101 non-null object

 4 age 101 non-null float64

 5 hdlngth 101 non-null float64

 6 skullw 101 non-null float64

 7 totlngth 101 non-null float64

 8 taill 101 non-null float64

 9 footlgth 101 non-null float64

 10 earconch 101 non-null float64

 11 eye 101 non-null float64

 12 chest 101 non-null float64

 13 belly 101 non-null float64

dtypes: float64(10), int64(2), object(2)

memory usage: 11.8+ KB

None

We have 101 records left to work with. We will prepare our features and target value.

Features are all numeral characteristics of the animal; the target value is the age of
the opossum.

Metrics for Splitting Decisions | FITPED AI

185

Select features (excluding the target variable and

irrelevant columns) for prediction

X = df.drop(["case", "site", "Pop", "sex", "age"], axis=1)

Set the target variable (age) to be predicted

y = df["age"]

Print the features and the target variable to confirm the

selection

print(X)

print(y)

Program output:
 hdlngth skullw totlngth taill footlgth earconch

eye chest belly

0 94.1 60.4 89.0 36.0 74.5 54.5

15.2 28.0 36.0

1 92.5 57.6 91.5 36.5 72.5 51.2

16.0 28.5 33.0

2 94.0 60.0 95.5 39.0 75.4 51.9

15.5 30.0 34.0

3 93.2 57.1 92.0 38.0 76.1 52.2

15.2 28.0 34.0

4 91.5 56.3 85.5 36.0 71.0 53.2

15.1 28.5 33.0

..

...

99 89.5 56.0 81.5 36.5 66.0 46.8

14.8 23.0 27.0

100 88.6 54.7 82.5 39.0 64.4 48.0

14.0 25.0 33.0

101 92.4 55.0 89.0 38.0 63.5 45.4

13.0 25.0 30.0

102 91.5 55.2 82.5 36.5 62.9 45.9

15.4 25.0 29.0

103 93.6 59.9 89.0 40.0 67.6 46.0

14.8 28.5 33.5

[101 rows x 9 columns]

0 8.0

1 6.0

2 6.0

3 6.0

4 2.0

 ...

Metrics for Splitting Decisions | FITPED AI

186

99 1.0

100 1.0

101 6.0

102 4.0

103 3.0

Name: age, Length: 101, dtype: float64

We will divide the data into training and testing, similar to the standard decision tree.

We will use an 80:20 distribution

from sklearn.model_selection import train_test_split

Split the dataset into training and testing sets, with 80%

for training and 20% for testing

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

All that remains is to build a regression decision tree model

from sklearn.tree import DecisionTreeRegressor

Initialize the DecisionTreeRegressor model with a fixed

random state for reproducibility

model = DecisionTreeRegressor(random_state=42)

Train the model on the training data

model.fit(X_train, y_train)

Make predictions on the test data

y_pred = model.predict(X_test)

Print the actual ages from the test set

print('real age')

print(y_test.to_numpy())

Separator for readability

print('-----')

Print the predicted ages

print('predicted age')

print(y_pred)

Metrics for Splitting Decisions | FITPED AI

187

Program output:
real age

[2. 2. 7. 6. 4. 3. 4. 5. 9. 8. 5. 3. 1. 2. 3. 2. 3. 4. 5. 4.

1.]

predicted age

[3. 3. 6. 6. 4. 2. 7. 2. 6. 6. 2. 3. 2. 3. 3. 4. 3. 1. 3. 4.

1.]

With the regression tree, we calculate the prediction accuracy using Root mean
square error (RMSE).

The value represents the standard deviation of the residuals (prediction error).

Import mean_squared_error from sklearn.metrics to calculate

the root mean squared error (RMSE)

from sklearn.metrics import mean_squared_error

Calculate the RMSE (Root Mean Squared Error) between the

real and predicted values

rmse = mean_squared_error(y_test, y_pred, squared=False)

Print the RMSE value to evaluate the model's performance

print(rmse)

Program output:
1.7320508075688772

Similar to standard decision trees, we can plot the generated tree.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

_ = tree.plot_tree(model,

 feature_names = ['hdlngth', 'skullw',

'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest',

'belly'],

 filled=True)

Metrics for Splitting Decisions | FITPED AI

188

Program output:

📝 6.6.5

Choose the correct statement.

• A regression decision tree predicts a numeral value.
• A regression decision tree predicts a categorical value.

📝 6.6.6

Complete the correct code to create a regression decision tree model with a
generation depth of maximum 4.

from sklearn.tree import _____

model = _____(random_state=42, _____=4)

_____._____(X_train, y_train)

Random Forest

Chapter 7

Random Forest | FITPED AI

190

7.1 Ensemble learning

🕮 7.1.1

Decision trees are easy to build, easy to use and easy to interpret. Despite their many
advantages, they are not very successful in practice.

In practice, a combination of a large number of decision trees or other classification
methods is quite successful. These methods are referred to as ensemble machine
learning methods.

Why the combination of several methods is successful can be easily illustrated by
the following example.

Assume a game where we roll a die:

• If number 1 or 2 is rolled, our opponent wins,
• if 3, 4, 5, or 6 is rolled, we win.

It is obvious that the chance of our winning is 4:2 or 2:1

Consider the following options:

• Game 1 - let's play 100 times, with a bet per game of 1 EURO
• Game 2 - let's play 10 times with a bet of 10 EUR
• Game 3 - let's play once, the bet is EUR 100.

The expected value of the win is the same for all three games

• Game1 = (P(4/6) * 1)*100 = 0.6666 * 1 * 100 = EUR 66.66
• Game2 = (P(4/6) * 10)*10 = 0.6666 * 10 * 10 = EUR 66.66
• Game3 = (P(4/6) * 100)*1 = 0.6666 * 100 * 1 = EUR 66.66

The difference lies in the independent measurements. Although the expected values
are the same, the distributions of the results are significantly different!

When are we the most sure that we will definitely earn money?

These are still random rolls of the dice. In the graph we show the observed results (%
of our winnings) when simulating the game.

Random Forest | FITPED AI

191

From this simple example, it is clear that a single tree, with a large weight of its
classification, can be successful, but also very unsuccessful in classification. We
minimize the risk (i.e. we increase the success), if we use multiple trees with small
classification weight.

📝 7.1.2

Why is it advantageous to combine multiple decision trees in ensemble learning
methods instead of relying on a single tree?

• It increases the accuracy and reduces the risk of making errors in
classification.

• It reduces the need for large datasets.
• It makes the model easier to interpret.
• It simplifies the model-building process.

📝 7.1.3

In the dice game example, how does the number of games played affect the certainty
of the outcome?

• The more games played, the more consistent the results become.
• The more games played, the less certain we are about the outcome.
• The number of games does not affect the outcome.
• The more games played, the higher the expected value of the win.

🕮 7.1.4

Ensemble learning

In machine learning, there is an approach where multiple models are created and
combined to improve the accuracy and reliability of predictions. This is known as
ensemble learning. The idea behind ensemble learning is simple: instead of relying
on one model to make predictions, we use a group (or ensemble) of models. When

Random Forest | FITPED AI

192

combined, these models can lead to better performance than any single model in
isolation. This improvement in accuracy comes from the collective wisdom of the
models, especially when they are trained on diverse data or employ different
algorithms. By aggregating the predictions of multiple models, ensemble methods
aim to enhance the generalization ability of the system.

One of the primary benefits of ensemble learning is that it can reduce the variance of
the model’s predictions. Variance refers to the extent to which a model’s predictions
change based on different training data. A high variance typically leads to overfitting,
where a model performs well on the training data but poorly on new, unseen data.
When predictions from multiple models are averaged, the variance can be
significantly reduced, especially if the individual models' predictions are mutually
independent. This averaging process helps to smooth out inconsistencies and
fluctuations in the predictions of individual models.

Additionally, individual models in an ensemble can be re-learned or adjusted to
improve their performance. However, the ensemble itself may be resistant to the
need for relearning. This means that even if one or more of the models in the
ensemble need adjustment, the ensemble as a whole may still produce reliable
predictions. The robustness of ensemble methods makes them highly effective in
real-world applications, where the data can be noisy or incomplete.

Ensemble methods are classified into three main approaches: bagging, boosting,
and stacking. Each of these methods combines the predictions of multiple models
in different ways.

• Bagging (Bootstrap Aggregating) involves training multiple models
independently on different subsets of the data and then averaging their
predictions.

• Boosting involves training models sequentially, with each new model
focusing on the mistakes made by previous ones.

• Stacking combines predictions from different models and then trains a final
model to aggregate these predictions into a final output. These approaches
vary in how they handle the models and how they combine their predictions,
but they all leverage the power of multiple models to enhance performance.

📝 7.1.5

What is one of the primary benefits of using ensemble learning methods?

• They increase the accuracy of the model.
• They make the model faster to train.
• They reduce the complexity of the model.

Random Forest | FITPED AI

193

📝 7.1.6

Which of the following are the basic approaches of ensemble learning?

• Bagging
• Boosting
• Clustering

🕮 7.1.7

Bagging

In machine learning, bagging (short for Bootstrap Aggregating) is a technique used
to improve the performance and stability of algorithms, particularly decision trees.
Bagging works by creating multiple subsets of the original training set through a
random sampling process. Each subset is used to train a separate model, and the
final prediction is based on the majority voting or averaging of the outputs from all
individual models. The goal of bagging is to reduce the variance of the model, which
helps prevent overfitting and improves the model's generalization to new data.

One of the key methods that utilizes bagging is the Random Forest algorithm.
Random Forest builds an ensemble of decision trees, where each tree is trained on a
different subset of the data created by bagging. In this context, bagging helps to
reduce the variance of decision trees, which are often prone to overfitting when
trained on small datasets or noisy data. Each decision tree is trained independently
on a random sample, and the final output is obtained by averaging the predictions
(for regression tasks) or by majority voting (for classification tasks) from all the trees
in the forest.

The process of creating random subsets of the original data involves two key
techniques: random sampling of rows and random selection of features. In bagging,
some rows in the dataset may be duplicated, and others may be omitted to create
different training sets for each model. Additionally, when building each decision tree,
not all features (columns) of the dataset are used. Instead, a random subset of
features is chosen, making each tree unique. This randomization reduces the
influence of individual data points or features, which helps to minimize overfitting
and leads to better model performance when generalizing to new data.

Random Forest | FITPED AI

194

In summary, bagging and Random Forest are powerful techniques for improving the
accuracy and robustness of machine learning models. By training multiple models
on different subsets of the data and combining their outputs, these methods
significantly reduce the variance of the predictions, making them highly effective for
a variety of tasks, particularly classification problems.

📝 7.1.8

What is the primary purpose of bagging in machine learning?

• To reduce the variance of the model
• To increase the model complexity
• To improve the accuracy of a single model

📝 7.1.9

Which of the following are characteristics of Random Forest?

• It uses random subsets of data and features to train multiple decision trees
• It applies bagging to reduce variance
• It trains a single decision tree using the entire dataset
• It only uses the most important features for training

7.2 Random forest

🕮 7.2.1

Aggregation

In the Random Forest method, bagging is employed to create multiple decision trees
using random subsets of the training data. This technique reduces overfitting and
enhances the model's ability to generalize on unseen data. Bagging helps by training
each decision tree on a different sample of data, and each tree is built independently.
Once all the decision trees are trained, their outputs are combined in a process called
aggregation.

Aggregation in Random Forest is the final step where the results from all individual
decision trees are combined to make a single prediction. For classification tasks, the
output of the Random Forest model is determined by majority voting. This means
that each tree "votes" on the class label, and the class with the most votes is selected
as the final prediction. For example, if a Random Forest model consists of 100 trees,

Random Forest | FITPED AI

195

and 60 trees predict class A and 40 predict class B, then class A will be chosen as
the final classification.

This majority voting approach helps reduce the influence of individual trees that may
make errors, leading to a more robust and accurate classification. The aggregation
process is particularly valuable in ensemble learning because it leverages the
strength of many models, each offering a slightly different perspective on the data.
By aggregating their predictions, the model becomes more resilient to noise or
outliers in the data, ultimately improving its overall accuracy and performance.

In summary, the aggregation step in Random Forest uses majority voting to combine
the predictions of multiple decision trees, making the final output more reliable. This
process is essential for reducing bias and variance, which are key factors in
improving the performance of machine learning models.

📝 7.2.2

What is the main purpose of the aggregation step in Random Forest?

• To combine the results of all trees using majority voting
• To train individual decision trees
• To create random subsets of the data

🕮 7.2.3

The bootstrap sample is taken from the real training dataset data. There is a high
probability that each sample will not contain a unique data.

Each model is obtained from a different bootstrap sample and trained independently.
Each model generates results. At the end, a majority voting takes place.

Random Forest | FITPED AI

196

📝 7.2.4

Which of the following statements about aggregation in Random Forest is correct?

• The output is based on the class with the highest number of votes
• Majority voting is used to aggregate the outputs of individual trees
• Only the most accurate decision tree is used for the final prediction
• Aggregation helps reduce variance by considering predictions from multiple

models

🕮 7.2.5

Random Forest algorithm

The Random Forest algorithm is a popular ensemble method used for both
classification and regression tasks. It operates by creating a set of decision trees,
each built using a random subset of the training data. This diversity in the data used
to create each tree is key to the power of Random Forest. The algorithm follows a
systematic procedure to build these decision trees and then aggregates their
predictions to deliver a final result.

1. In Random Forest, a number of random records, typically referred to as n
samples, are selected from a dataset that contains k records. This process

Random Forest | FITPED AI

197

(bagging) is make the dataset randomly sampled, and the records are
chosen independently with replacement.

2. For each of these random samples, individual decision trees are constructed.
Each tree is trained using the selected subset of data, which ensures that the
models are diverse and capture different aspects of the data.

3. Once the trees are trained, each tree generates an output. In a classification
problem, the output will be a predicted class label, while in regression, the
output is a predicted numeric value.

4. After all the decision trees have made their predictions, the final output of
the Random Forest model is produced by either majority voting (for
classification) or averaging (for regression). Majority voting ensures that the
class predicted by the most trees is selected as the final result, whereas
averaging takes the average of all tree outputs for regression tasks.

📝 7.2.6

Which of the following accurately describes the steps of the Random Forest
algorithm?

• Random records are selected from the dataset for each individual decision
tree

• The final output is determined by the majority voting or averaging of all
decision tree predict

• All decision trees are trained on the entire dataset to ensure consistency.
• Each decision tree is built using the same subset of features and records

from the dataset.

🕮 7.2.7

Important features of Random Forest

• Diversity - not all features (attributes or variables) are considered when
building each individual decision tree. This randomness leads to trees that
are different from one another, which increases the diversity of the model.

• Immune to multidimensionality - since each decision tree is built using a
subset of features, the algorithm can handle high-dimensional data better
than some other models. It reduces the risk of overfitting by ensuring that
trees don’t rely on all available features.

• Parallelization - Random Forest allows for parallelization because each tree
is created independently. This means that the training process can be
distributed across multiple processors or cores, making it faster and more
efficient when dealing with large datasets.

• Split train-test - unlike traditional methods where the dataset must be split
into training and testing sets, Random Forest inherently handles this

Random Forest | FITPED AI

198

problem. Since each decision tree is trained on a random subset of the data,
there will always be data points that any given tree has not seen, which helps
assess model performance without needing to manually separate the data.

• Stability - because they rely on the results of multiple trees. By aggregating
the predictions of many trees, the algorithm minimizes the risk of overfitting
and provides more reliable predictions, especially in the presence of noisy
data.

📝 7.2.8

Which of the following are important features of Random Forest?

• Parallelization allows for faster tree creation
• It is immune to multidimensionality due to feature randomness
• Each tree uses all available features to make predictions
• It always requires a separate training and testing set

🕮 7.2.9

Random Forest vs. Decision Trees

When comparing Random Forest to Decision Trees, it’s important to understand their
characteristics, advantages, and drawbacks.

Decision Trees are a fundamental machine learning method. They are simple to
understand and interpret, which is one of their biggest advantages. However,
decision trees have a tendency to overfit, especially when the model is allowed to
grow deep without constraints. Overfitting occurs when a model captures too much
detail from the training data, including noise, which results in poor performance on
unseen data. Despite this, decision trees are fast to build, making them useful when
computational efficiency is crucial. In addition, decision trees take the entire dataset
as input to generate their model, which means that all examples in the dataset
influence the tree’s structure.

Random Forest addresses the overfitting problem that decision trees often face. In
a Random Forest, multiple decision trees are built from different subsets of the data.
Each tree is trained on a random sample of the data, and the final output is
determined by averaging (for regression) or majority voting (for classification) from
all the trees. This technique reduces the risk of overfitting since the trees are less
likely to all make the same errors. However, Random Forest models are slower to
build because of the large number of trees that need to be trained and aggregated.
The random selection of observations and features during the training process
makes Random Forest a more robust method, improving generalization and
accuracy.

Random Forest | FITPED AI

199

While Random Forest is generally more accurate and stable due to its ensemble
nature, it comes at the cost of increased computational time. In contrast, Decision
Trees are faster to train but are more prone to overfitting. Both techniques have their
place depending on the problem at hand, with Random Forest being a more suitable
choice when model performance is prioritized over speed.

📝 7.2.10

Which of the following are true about Decision Trees and Random Forests?

• Decision Trees are prone to overfitting, while Random Forests reduce
overfitting by averaging or voting.

• Decision Trees take the entire dataset as input, while Random Forests use
only subsets of the data to build trees.

• Random Forests are faster to build than Decision Trees.
• Random Forests generate a single decision tree based on the entire dataset.

🕮 7.2.11

Advantages and disadvantages

Random Forest is a powerful ensemble learning method, widely used for both
classification and regression problems. This method leverages the strength of
multiple decision trees, which contributes to its numerous advantages. One of the
primary benefits of Random Forest is its ability to solve the issue of overfitting, which
is a common challenge in decision trees. By training multiple trees on random
subsets of the data and using majority voting or averaging to make predictions,
Random Forest reduces the impact of overfitting and generalizes better to unseen
data.

Random Forest can handle datasets with missing values. Unlike some models that
require complete data, it is still effective when there are null or missing values in the
dataset. Its ability to parallelize is another advantage, as it allows the trees to be
trained simultaneously, making efficient use of computational resources.
Furthermore, the use of multiple trees ensures stability in the model's predictions,
as the final output is based on the average results from many decision trees, thus
reducing variance. Random Forest also maintains diversity because it does not
consider all attributes when building each tree, which enhances the model's
robustness and prevents it from becoming too specialized on specific features.

Random Forest is not without its disadvantages. One of the major drawbacks is its
complexity. Unlike decision trees, where one can follow a clear path to make
predictions, the workings of a Random Forest are less transparent. The sheer
number of trees and the randomization process make it challenging to interpret the

Random Forest | FITPED AI

200

model. Additionally, training Random Forest models can be computationally
expensive and time-consuming, especially as the number of trees grows. The need
for each individual tree to generate an output whenever a prediction is made can slow
down the process, especially in real-time applications.

While Random Forest is a highly effective tool, it lacks the interpretability that some
other models provide, which is often referred to as "not being able to see into the
forest."

📝 7.2.12

What are the benefits of Random forest?

• It solves the problem of overfitting
• It works well even if the data contains null/missing values
• It exhibits the features of parallelization
• It combines GINI index and Entropy within a single tree
• It also works at higher degrees of polynomial

📝 7.2.13

Which of the following are advantages of Random Forest?

• Random Forest works well with missing data in the dataset.
• Random Forest can be used for both classification and regression.

Random Forest | FITPED AI

201

• Random Forest is computationally inexpensive to train.
• Random Forest is transparent and easy to interpret.

7.3 Other ensemble learning methods

🕮 7.3.1

Boosting

There were three basic techniques in ensemble machine learning methods: bagging,
boosting, stacking.

Boosting is another popular ensemble learning technique, which is different from
bagging in several key ways. While bagging involves training multiple models in
parallel, boosting operates sequentially. This means that in boosting, each model is
built one after another, with each subsequent model trying to correct the errors made
by the previous ones. Boosting is particularly powerful because it transforms "weak
learners" - models that perform slightly better than random guessing - into a strong
predictive model by focusing on correcting previous mistakes, which improves
accuracy.

A key feature of boosting is the way it assigns weights to the input patterns. Initially,
each pattern has the same weight, but when a pattern is misclassified, its weight is
increased. This ensures that the subsequent models pay more attention to the
misclassified patterns, trying to correct the mistakes made earlier in the process.
The final prediction in boosting is made through weighted voting, where each model's
contribution to the overall decision depends on its performance.

Unlike bagging, where multiple models are created independently, boosting builds
models sequentially, making it more sensitive to the data and its distribution.
Boosting is known for achieving higher accuracy than bagging in many cases,
especially when the models are weak learners that have room for improvement.
However, the sequential nature of boosting means that it can be computationally
more expensive and slower to train compared to bagging.

Random Forest | FITPED AI

202

Boosting also offers an advantage in hyperparameter configuration. Since boosting
focuses on correcting errors from previous iterations, it can be more fine-tuned and
better configured, making it highly adaptable to different datasets. This ability to
adjust and improve continuously makes boosting a powerful technique for improving
model performance.

📝 7.3.2

What is bagging?

• a technique that creates different subsets of the training set
• a technique that combines "weak learners" into a strong sequential model for

the highest possible accuracy
• a technique that compares all the metrics of success of a single decision

tree
• a metric of the equilibrium representation of classes in the dataset

📝 7.3.3

Which of the following statements about boosting are true?

• Boosting gives more weight to misclassified input patterns.
• Boosting uses simple models (weak learners) and builds a strong sequential

model.
• Boosting runs in parallel, like bagging.
• In boosting, each model is trained independently from the others.

🕮 7.3.4

Voting

The Voting technique is a powerful ensemble method where different classifiers, or
models, are combined to make predictions. Unlike bagging and boosting, which rely
on either majority voting or weighted voting based on individual model outputs,
voting involves a different approach: it aggregates the predictions from several base
classifiers to make the final prediction. These base classifiers can be any type of
machine learning model, and they contribute to the final decision in a way that goes
beyond just simple averaging or voting.

In Voting, the individual classifiers cast votes for the predicted class, and the final
prediction is made based on how many votes a class receives. However, the key
feature of this method is that the reliability of each classifier’s vote is considered at

Random Forest | FITPED AI

203

the next level of the meta-classifier. This means that some classifiers, which are
more reliable, might have a stronger influence on the final decision compared to less
reliable classifiers. The meta-classifier essentially learns from the results of these
base classifiers, refining the final prediction based on the reliability of each classifier.

This technique is particularly useful when we want to combine the strengths of
multiple learning algorithms. For example, if we have a decision tree, a support vector
machine (SVM), and a logistic regression model, each of these models might perform
differently on different aspects of the data. By combining them using the Voting
method, we can leverage their complementary strengths, leading to a more robust
and accurate final prediction. Voting can be seen as a simple yet effective way to
increase the performance of a model by bringing together different approaches to
make the final decision.

Voting can be applied in both classification and regression tasks. While in
classification, we use the majority vote (for classification tasks) or average (for
regression tasks), in more complex setups, we can use a weighted voting system
where different classifiers contribute differently based on their accuracy. This makes
the Voting technique flexible and adaptable to different types of problems.

📝 7.3.5

Which of the following is a characteristic of the Voting technique?

• It combines different models to make a final prediction.
• It only works for classification tasks.
• It always applies majority voting, regardless of classifier reliability.
• It uses only one model to make predictions.

Random Forest | FITPED AI

204

📝 7.3.6

Which of the following statements about the Voting technique is true?

• Voting considers the reliability of each classifier in determining the final
output.

• In Voting, base classifiers are combined to improve the robustness of the
prediction.

• In Voting, the final prediction is based on the average output of all
classifiers.

• The Voting technique only uses decision trees to make predictions.

7.4 Practical tasks

🕮 7.4.1

If we use the scikit-learn library to create a Random Forest, we can set the following
parameters:

• n_estimators - the number of trees that the algorithm creates before
averaging the predictions.

• max_features- the maximum number of elements that the Random Forest
considers to be a node distribution.

• mini_sample_leaf- specifies the minimum number of leaves needed to
distribute the inner node.

• n_jobs - information about the number of processors that can be used. If the
value is 1, only one processor can be used, but if the value is -1, there is no
limit.

• random_state - checks the randomness of the sample. The model will always
produce the same results if it has a certain value of random state

• oob_score - OOB stand for Out Of the Bag. This is a random forest cross-
validation method. A portion of the sample is not used to train the data, but it
is used to evaluate its performance

📝 7.4.2

Project: Random Forest for Titanic dataset

Building a random forest is a very similar process to building a decision tree. A
random forest is actually a model that consists of several individual decision trees.

Random Forest | FITPED AI

205

The final predicted value of the random forest is most often the most frequent
resulting value from the individual decision trees.

The following example shows a solution to the Titanic survival prediction using a
random forest.

• Dataset: https://priscilla.fitped.eu/data/pandas/titanic.csv

We load the dataset and prepare a suitable training and test set as in the previous
sections.

Importing libraries

import pandas as pd

from sklearn.model_selection import train_test_split

import warnings

warnings.filterwarnings('ignore')

Reading the Titanic dataset from a URL

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

Selecting relevant columns for analysis

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

Removing any rows with missing values

data = data.dropna()

Convert the 'Sex' column to numerical format: male -> 0,

female -> 1

pd.set_option('future.no_silent_downcasting', True)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

Creating feature matrix X by excluding 'Survived' column

X = data[data.columns.difference(['Survived'])]

Defining target variable y as 'Survived' column

y = data['Survived']

Splitting data into training (70%) and test (30%) sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

https://priscilla.fitped.eu/data/pandas/titanic.csv

Random Forest | FITPED AI

206

We will build a Random Forest model using the sklearn library:

• https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassi
fier.html

Importing the RandomForestClassifier from sklearn.ensemble

for building a Random Forest model

from sklearn.ensemble import RandomForestClassifier

Initializing the Random Forest model with a fixed random

seed for reproducibility

rf_model = RandomForestClassifier(random_state=42)

We will train the created model and make predictions using the test set.

Fitting the Random Forest model to the training data

rf_model.fit(X_train, y_train)

Predicting the target variable (Survived) using the trained

Random Forest model on the test data

y_pred = rf_model.predict(X_test)

Printing the predicted values for the test data

print(y_pred)

Program output:
[1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0

0 1 0 0 0 0

 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1

0 1 0 1 0 0

 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1

0 0 1 0 1 0

 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0

 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0

0 1 0 1 1 0

 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0]

We compare the values with the real y_test values.

print(y_test.to_numpy())

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Random Forest | FITPED AI

207

Program output:
[0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 0

 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1

1 0 0 1 0 0

 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1

0 0 0 1 1 0

 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1

1 1 0 0 0 0

 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0

0 1 0 1 1 0

 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0]

We compute the prediction accuracy in the same way as for decision trees.
from sklearn import metrics

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Program output:
Accuracy: 0.786046511627907

We compare the results with the default decision tree model.

Importing the DecisionTreeClassifier from sklearn.tree

from sklearn.tree import DecisionTreeClassifier

Creating an instance of the DecisionTreeClassifier with a

fixed random state for reproducibility

clf = DecisionTreeClassifier(random_state=42)

Training the DecisionTreeClassifier on the training data

(X_train, y_train)

clf.fit(X_train, y_train)

Predicting the target variable (Survived) on the test data

(X_test)

y_pred_DT = clf.predict(X_test)

Printing the accuracy of the DecisionTreeClassifier model on

the test data

print("Accuracy:", metrics.accuracy_score(y_test, y_pred_DT))

Random Forest | FITPED AI

208

Program output:
Accuracy: 0.7767441860465116

The accuracy of the random forest model compared to the decision tree is 0.93%
higher.

• The random forest, like the decision tree, can be fitted with parameters.

The following example shows how the prediction accuracy of a random forest varies
based on the number of trees built of.

• We create the forest sequentially from 1 to 30 trees and wefind the
prediction accuracy.

Importing matplotlib for plotting

import matplotlib.pyplot as plt

Initializing empty lists to store the number of estimators

and accuracy values

n_estimators = []

acc = []

Looping through a range of values for n_estimators from 1 to

30

for i in range(1, 30):

 # Creating a RandomForestClassifier with the current number

of estimators

 rf = RandomForestClassifier(n_estimators=i, random_state=42)

 # Fitting the model on the training data (X_train, y_train)

 rf.fit(X_train, y_train)

 # Predicting the target variable (Survived) on the test data

(X_test)

 pred = rf.predict(X_test)

 # Appending the accuracy score of the predictions to the acc

list

 acc.append(metrics.accuracy_score(y_test, pred))

Random Forest | FITPED AI

209

 # Appending the current number of estimators to the

n_estimators list

 n_estimators.append(i)

Creating a DataFrame to store the accuracy and number of

estimators for visualization

d = pd.DataFrame({'acc': pd.Series(acc), 'n_estimators':

pd.Series(n_estimators)})

Plotting the accuracy against the number of estimators

plt.plot('n_estimators', 'acc', data=d, label='acc')

Adding labels and a legend to the plot

plt.xlabel('n_estimators')

plt.ylabel('accuracy')

plt.legend()

Program output:

The forest with 10 trees has the highest accuracy.

Creating a RandomForestClassifier model with a fixed number

of estimators (10) and a random seed for reproducibility

rf_model = RandomForestClassifier(random_state=42,

n_estimators=10)

Random Forest | FITPED AI

210

Fitting the model to the training data (X_train, y_train)

rf_model.fit(X_train, y_train)

Predicting the target variable (Survived) for the test data

(X_test)

pred = rf_model.predict(X_test)

Printing the accuracy of the predictions by comparing with

the actual labels (y_test)

print(metrics.accuracy_score(y_test, pred))

Program output:
0.8046511627906977

A forest with 10 trees has an accuracy of 80.47%, which is 1.87% higher than the
accuracy of the random forest model with default settings.

📝 7.4.3

A random forest is a model, which consists of several individual decision trees.

• True
• False

⌨ 7.4.4 RandomForest with six trees

Complete the code to build a random forest with six trees. Use the parameter
random_state=42 to preserve the randomization.

Set the size of the test set to 20%. As a result, write the model accuracy.

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

Random Forest | FITPED AI

211

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

📝 7.4.5

How many decision trees would you use in a random forest model based on the
following graph?

Regression

Chapter 8

Regression | FITPED AI

213

8.1 Regression

🕮 8.1.1

Regression is a core technique in supervised learning, particularly in fields like AI and
data science. It is used to predict continuous numerical values based on input data.
While classification models predict discrete categories, regression models focus on
understanding and predicting relationships between variables, making them
invaluable for tasks such as forecasting and trend analysis.

In a regression model, we aim to establish a mathematical function that describes
the relationship between one or more independent variables (also called predictors
or features) and a dependent variable (also called the target or outcome). For
instance, a company might use regression to predict sales based on variables like
advertising spend, product price, and market conditions. By doing so, the company
can understand how changes in these factors influence sales and make more
informed decisions.

Regression analysis is widely applied when there is a need to understand the
relationship between variables in a dataset. These relationships could be linear
(where the dependent variable changes at a constant rate with respect to an
independent variable) or non-linear. A key application of regression models is
forecasting, where they help predict future values based on historical data. For
example, predicting stock market trends or forecasting weather patterns often relies
on regression techniques. It can also help in establishing causal relationships, where
researchers determine how changes in one variable (e.g., temperature) affect
another (e.g., crop yields).

The purpose of regression analysis is primarily twofold: predicting the value of the
dependent variable given the independent variables, and understanding the effect of
an independent variable on the dependent variable. For example, a business could
use regression to predict how changes in advertising spending will influence sales,
or to forecast future sales based on historical trends.

📝 8.1.2

What is the primary difference between regression and classification in machine
learning?

• Regression predicts continuous values, while classification predicts discrete
categories.

• Regression predicts discrete categories, while classification predicts
continuous values.

• Both regression and classification predict continuous values.
• Both regression and classification predict discrete categories.

Regression | FITPED AI

214

🕮 8.1.3

In AI systems, regression is not just a standalone predictive tool but also a
foundational component of larger workflows. It aids in deriving insights, optimizing
processes, and supporting decision-making. Typical applications are:

• Predicting prices - regression models are used in real estate platforms to
predict house prices based on factors like size, location, and age of
properties, enabling accurate valuations.

• Estimating probabilities and scores - in e-commerce, regression helps
estimate customer lifetime value, enabling businesses to identify high-value
customers and allocate resources effectively.

• Forecasting trends - regression supports forecasting tasks, such as
predicting sales trends, stock prices, or energy demand, based on historical
data and influencing factors.

By capturing the relationships between input variables and continuous outcomes,
regression serves as a cornerstone of predictive analytics and enhances the
functionality of AI-driven systems. It also provides a stepping stone to more
advanced AI techniques, such as neural networks, where regression-like structures
are integral to model architectures.

📝 8.1.4

Which of the following are typical applications of regression analysis?

• Predicting future sales based on past sales data.
• Forecasting stock market trends.
• Determining the price of a house based on its features like size and location.
• Categorizing animals based on species.

🕮 8.1.5

Classification vs. regression

In machine learning, classification and regression are two fundamental tasks, but
they differ significantly in terms of goals and types of predictions they make. The key
difference lies in the nature of the predicted output. Classification is used when we
want to categorize data into predefined classes or labels, such as predicting whether
an email is spam or not spam (binary classification), or predicting the digit in an
image (such as 0, 1, 2,...,9). These outputs are discrete and non-numerical.

Regression | FITPED AI

215

On the other hand, regression is used when we need to predict a continuous value.
Instead of assigning a class label, regression models output numerical values, which
can be integers or decimals. For example, predicting house prices based on various
factors like size and location, or predicting the temperature for the next week, are
tasks suited for regression models. The purpose of regression is to understand the
relationship between the input variables (predictors) and a continuous target
variable.

The assumptions we make in classification and regression also differ. In
classification, we assume that there is a set of discrete classes, and we aim to find
the boundary or decision rule that separates these classes based on the input
features. In contrast, regression assumes a continuous relationship between the
dependent and independent variables, which allows us to make predictions with a
smooth, continuous output.

Thus, the main difference between classification and regression is the nature of the
predicted variable: classification predicts labels, whereas regression predicts
continuous values.

📝 8.1.6

What is the key difference between classification and regression?

• Classification predicts discrete values, while regression predicts continuous
values.

• Classification predicts continuous values, while regression predicts discrete
values.

• Classification and regression both predict continuous values.
• Classification and regression both predict discrete values.

8.2 Linear regression I.

🕮 8.2.1

Linear regression

In linear regression, the goal is to predict a continuous target variable by
understanding the relationship between the input variables (features) and the output
variable (target). The principle behind linear regression is to sum the effects of each
independent variable (feature) on the dependent variable (target), and the result is
the predicted value.

Regression | FITPED AI

216

This process of summing the effects of variables is called a linear combination. The
term "linear" refers to the fact that if the value of one feature changes by a fixed
amount, the output value will increase (or decrease) by a proportional amount. For
example, if you are predicting the price of a house based on its size, location, and
age, the regression model might learn that for each additional square meter, the price
increases by a fixed amount, and for each year of age, the price decreases by another
fixed amount. This relationship can be represented mathematically as a linear
equation.

A simple example of linear regression involves predicting the price of items in a
shopping basket. Imagine you know the total cost of a basket with various items,
such as potatoes, carrots, and a bottle of wine. However, determining the price of
each item individually can be tricky with just one basket, as there are many possible
combinations of prices that could result in the same total cost. But if you have
multiple baskets with different combinations, the model can use the available data
to find the best estimate for the price of each item.

In linear regression, the model learns the relationship between the features (such as
the quantity of each item) and the total price. It does this by minimizing the error in
its predictions, ensuring that the sum of the effects of each variable gives the closest
possible prediction to the actual target values.

📝 8.2.2

Which of the following statements about linear regression are true?

• Linear regression uses a linear combination of variables to make predictions.
• In linear regression, a change in the input variable results in a proportional

change in the output.
• Linear regression predicts a discrete class label.
• The output of linear regression is always an integer.

🕮 8.2.3

Linear regression is widely used in machine learning to solve regression problems,
where the goal is to predict a continuous output variable based on one or more input
variables. It is one of the simplest and most fundamental algorithms used in
predictive modeling, and it aims to model the relationship between input variables
and a continuous target variable.

In linear regression, we aim to find the best-fitting linear equation that represents the
relationship between the input variables (predictors or features) and the output
variable (response variable). The key idea behind this method is that the relationship

Regression | FITPED AI

217

between the input and output variables is assumed to be linear, meaning that the
target variable changes in proportion to changes in the input variables.

A simple linear regression model has the following equation:

y = b0 + b1 * x

Where:

• y is the dependent variable or the target variable (the value we are trying to
predict),

• x is the independent variable or the feature (the input data),
• b₀ is the intercept term, representing the value of y when x is zero,
• b₁ is the slope coefficient, representing the change in y for a one-unit change

in x.

The goal of linear regression is to find the best values for b₀ and b₁ such that the line
we draw through the data points best fits the actual data. This is achieved by
minimizing the errors, which are the differences between the predicted values (y) and
the actual values. The line that minimizes these errors is considered the best fit.

📝 8.2.4

What is the primary goal of linear regression?

• To predict a continuous value based on input variables.
• To predict a categorical value.
• To find the relationship between input and output variables in a non-linear

fashion.
• To classify data into specific categories.

Regression | FITPED AI

218

🕮 8.2.5

Simple linear regression

In simple linear regression, the relationship between the dependent variable (y) and
the independent variable (x) is modeled using a straight line. The equation for this
model is:

y = b0 + b1 * x

This equation represents a straight line where:

• y is the target variable we want to predict,
• x is the feature or input variable,
• b₀ is the intercept term, which represents the predicted value of y when x is

zero,
• b₁ is the slope coefficient, which measures how much y changes when x

increases by one unit.

The purpose of simple linear regression is to estimate the values of b₀ and b₁ in such
a way that the predicted values of y (using this equation) are as close as possible to
the actual observed values of y in the dataset. This is done by minimizing the sum
of squared errors between the predicted and actual values. The model searches for
the best-fit line that minimizes the discrepancy between the observed data points
and the predicted values from the line.

The slope coefficient (b₁) is crucial in determining the strength of the relationship
between the input variable and the target variable. If b₁ is positive, the relationship is
positive, meaning that as x increases, y also increases. Conversely, if b₁ is negative,
the relationship is negative, meaning that as x increases, y decreases.

Regression | FITPED AI

219

📝 8.2.6

Which of the following statements about simple linear regression are true?

• The goal is to predict a continuous output variable
• The slope coefficient (b₁) determines the change in y for a unit change in x.
• The equation of has only one input variable.
• The intercept term (b₀) represents the change in y for a unit change in x.

🕮 8.2.7

Predict house prices

In real estate, one common application of linear regression is predicting the sale
price of a house based on its features, such as its square footage. Suppose you want
to estimate how much you could sell your house for, and you have a graph of recent
home sales over the last two years, with the sale price plotted against the square
footage (sqft) of the homes.

In this example, the square footage of a house is the independent variable (input
feature), and the sale price is the dependent variable (output). Since no home recently
sold has the exact same square footage as your home, we can't predict an exact price
based on your home’s square footage. However, we can use linear regression to find
a general trend in the data, which will allow us to estimate the price for a house with
a specific square footage, even if it doesn't have the exact same size as those in the
data.

Linear regression will help find the best-fitting line that captures the relationship
between square footage and price. This relationship can be represented by the
equation:

Regression | FITPED AI

220

Price = b0 + b1 * sqft

Where:

• Price is the dependent variable (the price we want to predict),
• sqft is the independent variable (the square footage of the house),
• b₀ is the intercept, representing the estimated price when the square footage

is zero,
• b₁ is the slope coefficient, representing how much the price increases for

every additional square foot.

When the model is trained on the historical sales data, it will determine the values for
b₀ and b₁ that minimize the prediction error. Once these values are found, you can
input your house's square footage into the equation to predict the sale price.

For example, if the regression model finds that for every additional 100 square feet,
the price of the house increases by 15,000 EUR, and your house has 3,500 square
feet, the model will estimate the price based on that information.

📝 8.2.8

What does the slope coefficient (b₁) represent in a linear regression model for
predicting house prices?

• The increase in the sale price for every additional square foot of the house.
• The estimated sale price of the house when square footage is zero.
• The total price of the house.
• The decrease in price for every additional square foot of the house.

🕮 8.2.9

Home price estimate

Imagine you own a home with a square footage of 2,350 sqft and want to estimate
its sale price. To do this, you gather data on the sale prices of other homes in your
neighbourhood, each with different square footage. The question is: how can you
determine the correct price for your home?

Regression | FITPED AI

221

One simple approach is to find homes with slightly smaller and slightly larger square
footage than your home. For example, if homes with 2,300 sqft and 2,550 sqft sold
for 148,000 and 192,000 respectively, you could average their prices:

Estimated Price = (148,000 + 192,000) / 2 = 170,000

Alternatively, you might average prices from more neighbours add homes with 2,100
sqft, 2,700 sqft, and 2,400 sqft - to get a broader estimate (result is different).

Instead of relying on a few neighbours, you could use all the available data points
and fit a linear regression line. This line summarizes the relationship between square
footage and sale price, allowing you to predict the price of your home based on its
exact size.

📝 8.2.10

What is the average price if we have houses with following prices as neighbours:

145,000; 155,000; 160,000; 200,000?

Regression | FITPED AI

222

8.3 Linear regression II.

🕮 8.3.1

How to find regression line

In real-world scenarios, we often encounter datasets that involve multiple variables.
We have a dataset of houses where we know their sizes (in square feet) and their
corresponding selling prices. While it is clear that larger houses generally sell for
higher prices, the exact relationship between size and price is not immediately
apparent. This is where regression comes in.

To predict the price of a house based on its size you might start by plotting the
available data on a graph, with house sizes on the x-axis and prices on the y-axis. The
points scatter across the graph, showing variability in house prices even for homes
with similar sizes. This variability is expected because house prices are influenced
by other factors like location, condition, and market demand. However, the question
remains: can we capture a general trend between size and price?

To simplify the relationship and make predictions, we need to draw a line that
represents the average relationship between size and price. This line is called a
regression line. Its purpose is to summarize the data and provide a mathematical
formula to predict prices for any given house size, even if the exact size does not
exist in the dataset.

But here’s the challenge: there isn’t just one possible line. Depending on how we
position the line on the graph, we can create many different lines, each suggesting a
slightly different relationship between size and price. Some lines might tilt steeply,
indicating a sharp increase in price as size increases, while others may be flatter,
suggesting a weaker relationship. The question then becomes: which line best
represents the data?

This step is critical because the choice of the regression line affects the accuracy of
our predictions. A poorly chosen line might overestimate prices for some homes and
underestimate them for others, leading to unreliable conclusions. Thus, finding the

Regression | FITPED AI

223

"best" regression line is not just about drawing a line - it’s about ensuring it reflects
the underlying relationship between variables as accurately as possible.

📝 8.3.2

Why is it important to find the best regression line for a dataset?

• To minimize the differences between actual and predicted values.
• To establish a clear relationship between variables.
• To eliminate errors completely.
• To guarantee predictions are always correct.

📝 8.3.3

As accurately as possible

Once we recognize that many lines can represent the relationship between house
size and price, the next step is to determine which one is the most accurate. But how
do we decide what makes a line “accurate”? The answer lies in minimizing the errors
between the actual prices and the prices predicted by the line.

For each house in the dataset, the regression line provides a predicted price based
on its size. The error, in this context, is the difference between the actual price of the
house (as recorded in the dataset) and the predicted price (from the line).
Mathematically, this error is called a residual and is calculated as:

Residual = Actual Price − Predicted Price

If the regression line is positioned well, the residuals will be small, meaning the line
closely matches the data. However, if the line is poorly placed, the residuals will be
large, indicating that the predictions deviate significantly from the actual values.

Regression | FITPED AI

224

To evaluate how well a line fits the data, we aggregate the residuals for all houses. A
simple sum of residuals won’t work because positive and negative residuals could
cancel each other out. Instead, we square each residual (to eliminate negatives) and
calculate the Residual sum of squares (RSS):

The RSS measures the total error in the predictions. A smaller RSS indicates a better-
fitting line because it means the line minimizes the differences between actual and
predicted prices across all houses in the dataset. Therefore, the problem of finding
the “best” regression line becomes a mathematical optimization problem: find the
line that minimizes the RSS.

But solving this isn’t just a matter of trial and error. With many potential lines, it would
be impractical to test them all manually. Instead, we use a systematic mathematical
approach, often leveraging tools from calculus and linear algebra, to identify the
optimal values for the line’s slope and intercept. This process ensures that the
regression line is as accurate as possible, making it a powerful tool for prediction
and analysis.

By focusing on minimizing the RSS, we not only determine the best line but also
ensure that our predictions for house prices are grounded in the most reliable trend
derived from the data.

📝 8.3.4

What does the Residual sum of squares measure in a regression analysis?

• The total error between actual and predicted values.
• The total sum of all predicted prices.
• The average size of all houses.
• The difference between the largest and smallest prices.

📝 8.3.5

Minimizing the residual sum of squares

Finding the best-fitting line involves minimizing the RSS. The RSS measures the total
error between the actual values and the predicted values made by the regression line.
Let’s explore how to minimize this error systematically.

Regression | FITPED AI

225

The Residual sum of squares is given by:

Each residual represents the difference between the actual value of the dependent
variable and the value predicted by the line. Squaring these differences ensures that
all errors are positive and penalizes larger errors more heavily.

The goal is to minimize the RSS, which means finding the values of the intercept (b₀)
and the slope (b₁) that produce the smallest RSS.

The predicted value (y) in linear regression is calculated as:

y = b0 + b1 * x

The actual value is stored in the dataset and so we calculate RSS as the sum of the
squares of the differences between the actual price and the predicted price for all
houses in the dataset

RSS = [pricehouse1 - (b0 + b1 * squarehouse1)]2 + [pricehouse2 - (b0 + b1 * squarehouse2)]2 + ... +
[pricehousen - (b0 + b1 * squarehousen)]2

Optimization

To find the optimal b₀ and b₁, we use a method called Least squares estimation. This
involves calculus to compute the partial derivatives of the RSS with respect to b₀ and
b₁, setting these derivatives to zero, and solving for the parameters.

An alternative way to minimize the RSS is by using Gradient descent, an iterative
optimization technique. This method adjusts the parameters gradually to reduce the
RSS:

1. Start with initial guesses for b₀ and b₁.

Regression | FITPED AI

226

2. Calculate the gradient of the RSS (how RSS changes with respect to each
parameter).

3. Update b₀ and b₁ in the direction that reduces the RSS the most.
4. Repeat until the RSS converges to its minimum value.

📝 8.3.6

What does minimizing the residual sum of squares achieve in linear regression?

• Reduces the total prediction error of the regression model.
• Ensures the predicted values exactly match the actual values.
• Makes the regression line pass through all data points.
• Eliminates outliers from the dataset.

📝 8.3.7

Which methods are commonly used to minimize the RSS?

• Least squares estimation using calculus
• Gradient descent optimization
• Ignoring residuals for outliers.
• Trial and error to adjust the line visually.

📝 8.3.8

Least squares method

The Least squares method is a way to find the line that best fits a set of data points.
It ensures that the total of all the squared differences (errors) between the actual
values and the values predicted by the line is as small as possible.

Imagine you have some points on a graph: each point has an x-value (independent
variable) and a y-value (dependent variable). We want to find a straight line, y = mx +
b (it is the same like previous y = b1x + b0, but for better transparency we use one
letter variables), where:

• m is the slope of the line (how steep it is),
• b is the y-intercept (where the line crosses the y-axis).

This line helps us predict y for any given x, showing the relationship between the two
variables.

Regression | FITPED AI

227

The formulas to calculate m (slope) and b (intercept) are:

Where:

• n is the number of data points,
• ∑x and ∑y are the sums of all x- and y-values,
• ∑xy is the sum of the product of each x and y value,
• ∑x2 is the sum of the squares of all x-values.

Procedure:

1. Start with a table that includes columns for x and y values (your data points).
2. Add two more columns: one for xy (multiply each x by its corresponding y)

and one for x2 (square each x-value).
3. Calculate ∑x, ∑y, ∑xy, and ∑x2 by adding up the respective columns.
4. Use the formula for m to calculate the slope.
5. Use the formula for b to find the y-intercept.
6. Plug m and b into the equation y = m * x + b.

Example:

Consider the data:

• x: 1, 2, 3, 4, 5
• y: 2, 5, 3, 8, 7

x y xy x²

1 2 2 1

2 5 10 4

Regression | FITPED AI

228

x y xy x²

3 3 9 9

4 8 32 16

5 7 35 25

1. Sum the columns:∑x = 15, ∑y = 25, ∑xy = 88, ∑x2 = 55.
2. Use formula for m = (n∑xy−∑x∑y) / (n∑x2−(∑x)2) = (5 * 88 − 15 * 25) / (5 * 55

−(15)2) = 65 / 50 = 1.3
3. Find b =(∑y − m∑x) / n = (25 − (1.3 * 15)) / 5 = 1.1
4. Write the equation y = m*x + b = 1.3x + 1.1

📝 8.3.9

Which of the following is the primary purpose of the least squares method?

• Minimizing the sum of squared errors
• Maximizing the sum of squared errors
• Finding the median of the data
• Maximizing the slope of the regression line

📝 8.3.10

Which statements about the least squares method are true?

• It can be used to predict a dependent variable based on independent
variables.

• The sum of the squares of errors is called variance.
• It minimizes the difference between observed and predicted values.
• The slope of the line is determined by trial and error.

📝 8.3.11

What does the slope m in the equation y = mx + b represent?

• The rate of change of y with respect to x

Regression | FITPED AI

229

• The value of y when x=0
• The error in the model
• The intercept of the line

📝 8.3.12

Project: Least Squares Method and Gradient Descent application

Here is a Python program that demonstrates the process of finding the Residual sum
of squares (RSS) and minimizing it using both the Least squares method and
Gradient descent.

• Dataset - we simulate data points for the independent variable x and
dependent variable y.

• RSS calculation - a function calculates the residual sum of squares for given
b0 and b1.

• Least squares method computes the optimal b0 and b1 using closed-form
formulas derived from calculus.

• Gradient descent iteratively adjusts b0 and b1 to minimize the RSS using a
specified learning rate.

import numpy as np

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings('ignore')

Example dataset

x = np.array([1, 2, 3, 4, 5]) # Independent variable

y = np.array([1.2, 1.9, 3.2, 4.0, 5.1]) # Dependent variable

Function to calculate Residual Sum of Squares (RSS)

def calculate_rss(b0, b1, x, y):

 predicted = b0 + b1 * x

 residuals = y - predicted

 return np.sum(residuals ** 2)

1. Least Squares Solution

def least_squares(x, y):

 n = len(x)

 b1 = (np.sum(x * y) - np.sum(x) * np.sum(y) / n) /

(np.sum(x ** 2) - (np.sum(x) ** 2) / n)

 b0 = np.mean(y) - b1 * np.mean(x)

 return b0, b1

Regression | FITPED AI

230

b0_ls, b1_ls = least_squares(x, y)

print(f"Least Squares Solution:")

print(f"Intercept (b0): {b0_ls:.2f}, Slope (b1): {b1_ls:.2f}")

print(f"RSS (Least Squares): {calculate_rss(b0_ls, b1_ls, x,

y):.2f}")

Program output:
Least Squares Solution:

Intercept (b0): 0.11, Slope (b1): 0.99

RSS (Least Squares): 0.07

2. Gradient Descent Solution

def gradient_descent(x, y, learning_rate=0.01,

iterations=1000):

 b0 = 0 # Initial guess for intercept

 b1 = 0 # Initial guess for slope

 n = len(y)

 for _ in range(iterations):

 predicted = b0 + b1 * x

 error = y - predicted

 # Partial derivatives of RSS with respect to b0 and b1

 b0_gradient = -2 * np.sum(error) / n

 b1_gradient = -2 * np.sum(x * error) / n

 # Update parameters using gradient descent

 b0 -= learning_rate * b0_gradient

 b1 -= learning_rate * b1_gradient

 return b0, b1

b0_gd, b1_gd = gradient_descent(x, y, learning_rate=0.01,

iterations=1000)

print(f"\nGradient Descent Solution:")

print(f"Intercept (b0): {b0_gd:.2f}, Slope (b1): {b1_gd:.2f}")

print(f"RSS (Gradient Descent): {calculate_rss(b0_gd, b1_gd,

x, y):.2f}")

Regression | FITPED AI

231

Program output:
Gradient Descent Solution:

Intercept (b0): 0.12, Slope (b1): 0.99

RSS (Gradient Descent): 0.07

Visualizing the result

plt.scatter(x, y, color="blue", label="Data points")

plt.plot(x, b0_ls + b1_ls * x, color="green", label="Least

Squares Line")

plt.plot(x, b0_gd + b1_gd * x, color="red", linestyle="--",

label="Gradient Descent Line")

plt.xlabel("X")

plt.ylabel("Y")

plt.legend()

plt.title("Linear Regression: Least Squares vs. Gradient

Descent")

plt.show()

Program output:

Regression | FITPED AI

232

📝 8.3.13

Project: Find price for houses

Solve linear regression for the following dataset and show how it find price for
houses with 2500 and 3700 sqft

import matplotlib.pyplot as plt

Data

square_footage = [3419, 1256, 902, 3837, 1926, 1803, 1714,

1371, 3816, 1219,

 3571, 3833, 3033, 1156, 3218, 2528, 930,

922, 1183, 1695]

house_prices = [324350.89, 207179.35, 166770.06, 471519.89,

387793.16, 160234.44,

 175753.27, 239650.98, 432629.56, 144423.14,

230201.22, 310310.62,

 209227.28, 212224.21, 353152.77, 189225.85,

203751.89, 209049.79,

 154739.81, 313328.74]

Create scatter plot

plt.figure(figsize=(10, 6))

plt.scatter(square_footage, house_prices, color='blue',

label='House Data Points')

Labels and title

plt.title("House Prices vs. Square Footage", fontsize=16)

plt.xlabel("Square Footage", fontsize=14)

plt.ylabel("House Prices (in $)", fontsize=14)

plt.grid(True, linestyle='--', alpha=0.7)

plt.legend()

plt.show()

Regression | FITPED AI

233

Program output:

Your solution:

write your code

8.4 Advanced linear regression

📝 8.4.1

Quadratic regression

Regression analysis is a powerful tool in predicting relationships between variables.
While linear regression captures relationships in a straight line, quadratic regression
allows for more complexity by including a squared term. Choosing between these
models depends on the nature of your data and the underlying patterns you observe.

Linear regression finds the best straight-line relationship between an independent
variable x and a dependent variable y. This model assumes a constant rate of
change: if you increase x by a fixed amount, y changes proportionally. For example,
if you're predicting house prices based on square footage, linear regression assumes
every additional square foot adds roughly the same amount to the price.

Regression | FITPED AI

234

Quadratic regression extends linear regression by adding an x2 term to the equation,
allowing the model to capture curves. This is useful when the relationship between x
and y is not constant but varies. For instance, predicting crop yield based on fertilizer
use might exhibit diminishing returns: adding small amounts of fertilizer increases
yield, but too much could harm the plants. A quadratic regression curve fits this
scenario better than a straight line.

The formula for quadratic regression is an extension of linear regression, where the
relationship between the independent variable x and the dependent variable y is
modeled as a second-degree polynomial. The general form of the quadratic
regression equation is:

y = b0 + b1x + b2x2

Where:

• y is the dependent variable (the value we want to predict),
• x is the independent variable (the predictor),
• b0 is the y-intercept (the value of y when x=0),
• b1 is the coefficient of the linear term (how much y changes with a unit

change in x),
• b2 is the coefficient of the quadratic term (how the change in x affects y in a

non-linear way).

How to compute the coefficients (b0, b1, b2):

1. Create a table of the data points (x, y).
2. Calculate the values of x2 (square of x) and x2y (product of x2 and y).
3. Find the sums:∑x,∑y,∑x2,∑x2y
4. Set up the normal equations:

Regression | FITPED AI

235

Solve the system of equations to find the coefficients b0, b1, b2.

The quadratic regression model captures the curvature in the data and is useful when
the relationship between the variables is not linear.

📝 8.4.2

What type of regression should you use if the relationship between variables changes
direction, forming a curve?

• Quadratic regression
• Linear regression
• No regression
• Exponential regression

📝 8.4.3

Project: Quadratic regression

Find the quadratic regression solution for the dataset where home price depends on
square footage.

1. Prepare the X matrix:

• Include a column of 1’s for the intercept term (b0).
• Add x for the linear term and x2for the quadratic term.

import numpy as np

import matplotlib.pyplot as plt

from numpy.linalg import inv

Dataset

x = np.array([1200, 1500, 1800, 2000, 2200, 2400, 2600, 2800,

3000, 3200]) # Square Feet

y = np.array([250000, 300000, 350000, 400000, 450000, 500000,

550000, 600000, 650000, 320000]) # Home Price

Regression | FITPED AI

236

Step 1: Prepare matrices for quadratic regression

X matrix with terms [1, x, x^2]

X = np.column_stack((np.ones(len(x)), x, x**2))

2. Normal equation - use the formula b = (XTX)−1 to calculate the coefficients.

Step 2: Solve for coefficients using the normal equation:

Beta = (X^T X)^-1 X^T y

XT = X.T

beta = inv(XT @ X) @ (XT @ y)

Computes b0 (intercept), b1 (linear term), and b2(quadratic term).

Step 3: Extract coefficients

b0, b1, b2 = beta

print(f"Coefficients:\nIntercept (b0): {b0}\nLinear term (b1):

{b1}\nQuadratic term (b2): {b2}")

Program output:
Coefficients:

Intercept (b0): -518643.6228500223

Linear term (b1): 766.5431555285711

Quadratic term (b2): -0.14166684850999348

Compute y-values using the quadratic equation.

Step 4: Predicted values

y_pred = b0 + b1 * x + b2 * x**2

The scatter plot shows the original data, and the red curve shows the quadratic
regression fit.

Step 5: Plot the data and the quadratic regression curve

plt.scatter(x, y, color='blue', label='Actual Data')

plt.plot(x, y_pred, color='red', label='Quadratic Regression

Curve')

plt.xlabel('Square Feet')

plt.ylabel('Home Price')

plt.title('Quadratic Regression: Home Price vs. Square Feet')

plt.legend()

plt.show()

Regression | FITPED AI

237

Program output:

📝 8.4.4

Polynomial regression

Polynomial regression generalizes quadratic regression by including higher powers
of x, such as x3, x4 and so on. This flexibility enables the model to capture more
complex patterns, but it comes with challenges like overfitting.

In polynomial regression, the relationship between x and y is modeled as

y = b0 + b1x + b2x2 + ... + bnxn

Where:

• y is the dependent variable (the value we want to predict),
• x is the independent variable (the predictor),
• b0,b1,b2,…,bn are the coefficients that need to be determined,
• n is the degree of the polynomial, indicating how many powers of x are

included in the model.

Increasing the degree of the polynomial increases the model's complexity, allowing
it to adapt to more intricate datasets.

Regression | FITPED AI

238

How to compute polynomial regression:

1. Create a table of the data points (x,y).
2. For a polynomial of degree n, create additional columns with x2,x3,…, xn.
3. Use the least squares method to minimize the error. This involves solving the

following normal equations:

XTXb = XTy

Where:

• X is the matrix of input variables (with powers of x),
• b is the vector of coefficients [b0, b1, b2, …, bn],
• y is the vector of observed values.
• The solution to this matrix equation gives the coefficients b0, b1, b2, …, bn.

Example for a polynomial of degree 3

For a cubic polynomial regression (degree = 3), the equation is:

y = b0 + b1x + b2x2 + b3x3

You would need to calculate the sums of x, x2, x3, x4, x5, x6, and the corresponding
sums of y, xy, x2y, x3y, and solve the system of equations for the coefficients.

While polynomial regression offers flexibility, it risks overfitting the data, meaning the
model becomes too tailored to the training set and performs poorly on new data.

• Polynomial regression can capture more complex relationships compared to
linear regression.

• The degree of the polynomial n must be chosen carefully, as a very high
degree can lead to overfitting, where the model fits the noise in the data
rather than the actual relationship.

Regression | FITPED AI

239

📝 8.4.5

Which of the following are true about polynomial regression?

• It can model more complex patterns than linear regression.
• It risks overfitting if the degree is too high.
• It is always better than linear regression.
• It can only handle small datasets.

📝 8.4.6

Project: Polynomial regression

Find the polynomial regression solution for the dataset where home price depends
on square footage.

1. Prepare the data

• Input dataset contains x ss square footage of homes, and y as prices of
homes.

• Transform input features by use PolynomialFeatures(degree=4) from
sklearn.preprocessing to generate polynomial terms x,x2,x3,x4.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import PolynomialFeatures

from sklearn.linear_model import LinearRegression

Dataset

x = np.array([1200, 1500, 1800, 2000, 2200, 2400, 2600, 2800,

3000, 3200]).reshape(-1, 1) # Square Feet

y = np.array([250000, 300000, 180000, 400000, 450000, 250000,

550000, 600000, 650000, 480000]) # Home Price

Step 1: Transform the input features for polynomial

regression (degree 4)

poly = PolynomialFeatures(degree=4)

x_poly = poly.fit_transform(x)

Regression | FITPED AI

240

2. Fit the transformed features x into a LinearRegression model.

Step 2: Train a linear regression model with transformed

features

model = LinearRegression()

model.fit(x_poly, y)

Generate predictions - use the trained model to predict y-values based on polynomial
features.

Step 3: Generate predictions

y_pred = model.predict(x_poly)

Display the coefficients for the polynomial regression equation:
y=b0+b1x+b2x2+b3x3+b4x4

Step 4: Extract coefficients for the polynomial equation

coefficients = model.coef_

intercept = model.intercept_

print("Polynomial Regression Equation Coefficients:")

print(f"Intercept: {intercept}")

for i, coeff in enumerate(coefficients[1:], start=1):

 print(f"x^{i}: {coeff}")

Program output:
Polynomial Regression Equation Coefficients:

Intercept: -5085537.153200174

x^1: 11655.348876638145

x^2: -9.207415285868633

x^3: 0.0031174453504840827

x^4: -3.7746212910860777e-07

Create a scatter plot for the original data points and overlay the fitted polynomial
regression curve (red line).

Step 5: Plot the data and the polynomial regression curve

plt.scatter(x, y, color='blue', label='Actual Data')

x_line = np.linspace(min(x), max(x), 100).reshape(-1, 1)

y_line = model.predict(poly.transform(x_line))

plt.plot(x_line, y_line, color='red', label='Polynomial

Regression Curve (Degree 4)')

Regression | FITPED AI

241

plt.xlabel('Square Feet')

plt.ylabel('Home Price')

plt.title('Polynomial Regression (Degree 4): Home Price vs.

Square Feet')

plt.legend()

plt.show()

Program output:

📝 8.4.7

Multivariable regression

Most real-world problems involve more than one independent variable. Multivariable
regression (or multiple regression) extends linear regression to consider multiple
predictors, allowing us to better understand and predict outcomes.

If we return to the example of estimating the price of a house, we must admit that
square meters are not a completely unambiguous and sufficient predictor for
determining the price. We can add, for example, the number of bathrooms. In this
case, the visualization of the data set will look like in the figure, and the result will not
be a regression line, but a plane - in general, it exists in n-dimensional space.

Regression | FITPED AI

242

The equation for multivariable regression is:

y = b0 + b1x1 + b2x2 + ... + bnxn

where

• x1, x2,...,xn are independent variables (predictors),
• b1, b2,...,bn are their weights respective coefficients.

For example, completed predicting house prices might involve square footage,
number of bedrooms, and location as predictors.

Multivariable regression captures the combined effect of multiple factors, but it
requires careful data preparation. Variables must be independent of each other (no
multicollinearity), and their scales might need normalization to avoid bias.

How to compute the coefficients

1. Your dataset should have multiple predictors (independent variables) and
one dependent variable.

2. Organize the data into a matrix: Let X be an n × k matrix of the independent
variables, where n is the number of observations, and k is the number of
independent variables.

3. Let y be an n × 1 vector of the dependent variable.
4. The formula to compute the coefficients b = [b0, b1, …, bk]T is derived using

matrix algebra, and is given by:

b = (XTX)−1 XT y

Regression | FITPED AI

243

Where:

• XT is the transpose of matrix X,
• XTX is the matrix product of the transpose of X and X,
• (XTX)−1 is the inverse of the matrix XTX,
• XTy is the matrix product of the transpose of X and the vector y.

The equation y = b0 + b1x1 + b2x2 + ⋯ + bkxk represents a hyperplane in a k-dimensional
space. Each independent variable contributes to determining the value of y, and the
coefficients b1, b2, ...bk represent the influence of each variable on the prediction.

Example

We have following dataset with square feet, number of bathrooms and home price:

Square Feet

(x1)

Number of

Bathrooms (x2)

Home

Price (y)

1200 2 250000

1500 2 300000

1800 3 350000

2000 3 400000

2200 4 450000

2400 4 500000

2600 5 550000

2800 5 600000

3000 6 650000

3200 6 700000

We need to calculate the following values:

• ∑x1, ∑x2, ∑y
• ∑x1

2, ∑x2
2, ∑x1x2

• ∑x1y, ∑x2y

Regression | FITPED AI

244

Let’s start with the basic calculations for the dataset:

x1 x2 y x1² x2² x1x2 x1y x2y

1200 2 250000 1440000 4 2400 300000000 500000

1500 2 300000 2250000 4 3000 450000000 600000

1800 3 350000 3240000 9 5400 630000000 1050000

2000 3 400000 4000000 9 6000 800000000 1200000

2200 4 450000 4840000 16 8800 990000000 1800000

2400 4 500000 5760000 16 9600 1200000000 2000000

2600 5 550000 6760000 25 13000 1430000000 2750000

2800 5 600000 7840000 25 14000 1680000000 3000000

3000 6 650000 9000000 36 18000 1950000000 3900000

3200 6 700000 10240000 36 19200 2240000000 4200000

Now, calculate the following sums:

• ∑x1 = 1200 + 1500 + 1800 + 2000 + 2200 + 2400 + 2600 + 2800 + 3000 +
3200 = 24500

• ∑x2 = 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 = 40
• ∑y = 250000 + 300000 + 350000 + 400000 + 450000 + 500000 + 550000 +

600000 + 650000 + 700000 = 4800000
• ∑x1

2 = 1440000 + 2250000 + 3240000 + 4000000 + 4840000 + 5760000 +
6760000 + 7840000 + 9000000 + 10240000 = 53280000

• ∑x2
2 = 4 + 4 + 9 + 9 + 16 + 16 + 25 + 25 + 36 + 36 = 180

• ∑x1x2 = 2400 + 3000 + 5400 + 6000 + 8800 + 9600 + 13000 + 14000 + 18000
+ 19200 = 108400

• ∑x1y = 300000000 + 450000000 + 630000000 + 800000000 + 990000000 +
1200000000 + 1430000000 + 1680000000 + 1950000000 + 2240000000 =
13800000000

• ∑x2y = 500000 + 600000 + 1050000 + 1200000 + 1800000 + 2000000 +
2750000 + 3000000 + 3900000 + 4200000 = 24650000

The general formula for the multivariate regression is:

y = b0 + b1x1 + b2x2

Regression | FITPED AI

245

To solve for b0, b1, and b2, we use the following normal equations:

Substitute the values into these formulas:

• b1 = approx -30.2
• b2 = 272500
• b0 = −238900

Now, the regression equation is:

y = −238900 + (−30.2)⋅x1 + 272500⋅x2

Where:

• y is the predicted home price,
• x1 is the square footage,
• x2 is the number of bathrooms.

📝 8.4.8

What is the primary benefit of multivariable regression compared to simple linear
regression?

• It considers multiple factors simultaneously.
• It always predicts better than other models.
• It is faster to compute.
• It doesn’t require data preparation.

Regression | FITPED AI

246

📝 8.4.9

Project: Multivariate regression

To find the correct solution for the given dataset using multiple regression (with two
independent variables: square footage and number of bathrooms), we can use the
normal equation for multiple linear regression.

We will calculate the regression coefficients b0 (intercept), b1 (coefficient for square
footage), and b2 (coefficient for the number of bathrooms) based on the given
dataset.

1. We will set up the matrix form for multiple linear regression:

Y = X*b

Where:

• Y is the dependent variable (home prices).
• X is the matrix of independent variables (square footage and number of

bathrooms).
• b is the vector of regression coefficients.

2. We will compute b = (XTX)−1 using the normal equation.

import numpy as np

Given data: [Square Feet (x1), Number of Bathrooms (x2),

Home Price (y)]

data = [

 [1200, 2, 250000],

 [1500, 2, 300000],

 [1800, 3, 350000],

 [2000, 3, 400000],

 [2200, 4, 450000],

 [2400, 4, 500000],

 [2600, 5, 550000],

 [2800, 5, 600000],

 [3000, 6, 650000],

 [3200, 6, 700000]

]

Step 1: Extract X and Y

Regression | FITPED AI

247

X = np.array([[1, row[0], row[1]] for row in data]) # Add 1

for intercept

Y = np.array([row[2] for row in data])

Step 2: Calculate (X^T X)^-1 X^T Y

X_T = X.T # Transpose of X

X_T_X = np.dot(X_T, X) # X^T * X

X_T_X_inv = np.linalg.inv(X_T_X) # Inverse of (X^T * X)

X_T_Y = np.dot(X_T, Y) # X^T * Y

Step 3: Compute the coefficients (beta)

beta = np.dot(X_T_X_inv, X_T_Y)

Step 4: Output the results (intercept, coefficient for x1,

and coefficient for x2)

intercept = beta[0]

coef_x1 = beta[1] # Coefficient for square footage

coef_x2 = beta[2] # Coefficient for number of bathrooms

print(f"Intercept (b0): {intercept}")

print(f"Coefficient for Square Feet (b1): {coef_x1}")

print(f"Coefficient for Number of Bathrooms (b2): {coef_x2}")

Step 5: Predict prices for given square footage and number

of bathrooms

def predict_price(x1, x2):

 return intercept + coef_x1 * x1 + coef_x2 * x2

Example: Predict price for a house with 2500 sqft and 4

bathrooms

predicted_price = predict_price(2500, 4)

print(f"Predicted Price for 2500 sqft, 4 bathrooms:

{predicted_price}")

Program output:
Intercept (b0): -30769.23076920415

Coefficient for Square Feet (b1): 192.30769230769954

Coefficient for Number of Bathrooms (b2): 17307.692307692378

Predicted Price for 2500 sqft, 4 bathrooms: 519230.7692308142

Regression | FITPED AI

248

8.5 Logistic regression

🕮 8.5.1

Imagine we want to study the relationship between features like hours studied and
exam success. A common approach is to model this relationship using linear
regression. Here, we assume that the dependent variable, such as the exam score, is
related to the independent variable (hours studied) through a straight-line equation.

For example:

Exam score = m * (Hours studied) + b

By learning the slope (m) and intercept (b) from the data, we can predict the exam
score for any number of hours studied.

Now imagine we aren't interested in predicting the exact exam score. Instead, we
want to know whether a student will "pass" or "fail." To do this, we can take the output
of the linear regression and assign it to one of two classes:

• Pass - if the predicted score is greater than a certain threshold (e.g., 50).
• Fail - if the predicted score is less than or equal to the threshold.

Regression | FITPED AI

249

This simple transformation turns the continuous output of linear regression into a
binary prediction about success or failure.

What if we could do more than just assign a class? Imagine a student studies for 10
hours, and the model predicts that they will pass. Wouldn't it be helpful to also know
how confident the model is in this prediction? For instance, does the model believe
the student has a 90% chance of passing, or is it closer to 55%? This idea of attaching
probabilities to predictions can provide richer insights and guide better decisions.

📝 8.5.2

Why is linear regression commonly used to model the relationship between two
variables?

• It models relationships with a straight-line equation.
• It assumes random relationships.
• It ignores independent variables.
• It only predicts binary outcomes.

📝 8.5.3

When using a linear model, how can we classify predictions into two classes?

• By setting a threshold value to split the predictions.
• By ignoring the continuous outputs.
• By always assuming the output is 1.
• By multiplying the prediction by a constant factor.

Regression | FITPED AI

250

🕮 8.5.4

The limits of linear models for binary predictions

Consider scenarios where we want binary outcomes:

• Health for predicting whether a patient has a disease (yes or no).
• E-commerce to decide if a customer will buy a product (buy or not buy).
• Education to determine if a student will pass a course (pass or fail).

For these situations, we use a binary response variable, Y:

• Y = 1 if "yes"
• Y = 0 if "no"

We aim to model the probability that Y=1. For example, what is the likelihood that a
customer will buy a product?

At first glance, it might seem logical to use linear regression to predict probability.
However, linear regression has limitations:

• The predicted probabilities can go below 0 or above 1, which doesn’t make
sense in a real-world context.

• Probabilities must always stay within the interval [0, 1].
• If we predict a probability of -10%, what does that mean?
• If the predicted probability is 200%, it’s equally nonsensical.

To fix this problem, we need a model that:

1. Keeps probabilities within the interval [0, 1].
2. Provides us with meaningful confidence levels for predictions.

📝 8.5.5

Why is it inappropriate to use linear regression to predict probabilities?

• Linear regression can produce values outside the range [0, 1].
• Probabilities are always fixed.
• Linear regression ignores input variables.
• Probabilities require exact values, not approximations.

Regression | FITPED AI

251

📝 8.5.6

What does a probability of 55% indicate in a binary prediction model?

• A moderate likelihood of success.
• A guarantee of failure.
• An invalid prediction.
• A probability outside the acceptable range.

🕮 8.5.7

Predicting outcomes with confidence

Let’s imagine a company trying to predict whether a customer will buy their new
product. They collect data on several features, such as income and online shopping
habits, and build a simple linear regression model.

For example:

Likelihood of purchase = 0.2 * Income − 0.5

Using this model, they predict:

• A customer with an income of 5,000/month will have a likelihood of 0.5
(50%).

• Another customer with 10,000/month will have a likelihood of 1.5 (150%).

Problem with linear predictions

The issue becomes obvious: probabilities greater than 100% (or less than 0%) are
meaningless in real life. A value of 150% cannot represent the likelihood of a
purchase. Similarly, a negative likelihood, say -10%, doesn’t make sense.

A better approach is to use probability model

What if instead of a direct linear relationship, we use a model that squashes
predictions into a range between 0 and 1? For example:

• A customer with a 5,000/month income might have a probability of 55% to
make a purchase.

• Another customer with 10,000/month income might have a probability of
90%.

Regression | FITPED AI

252

These probabilities provide clearer, actionable insights for marketing campaigns.
Such a model gives us two things:

1. Predictions that always stay between 0 and 1.
2. A confidence level (e.g., "90% sure the customer will buy").

📝 8.5.8

What is the main problem with using linear regression for binary outcomes like "buy"
or "not buy"?

• It can produce values outside the range [0, 1].
• It always predicts the wrong class.
• It requires more data than binary models.
• It only works for three or more classes.

🕮 8.5.9

Transforming Linear regression to Logistic regression

Suppose we have a linear regression model to predict whether a customer will buy a
product. The model is given as:

z = 1.5 * Income − 0.5 * Age + 2

• where, z is the raw score. Based on z, we want to predict whether the
customer will buy (1) or not buy (0).

The values of z can range from −∞ to +∞. However, probabilities must always fall
between 0 and 1. Linear regression cannot directly handle this, so we need a
transformation.

The logistic function transforms z into a probability P (g(z)) that lies between 0 and
1:

P = 1 / (1+e−z)

This function maps any z value into the range (0, 1). It is also known as the sigmoid
function.

Regression | FITPED AI

253

The probability P represents the likelihood of the event occurring (e.g., the customer
buying the product).

For our model:

P=1 / (1+e−(1.5⋅Income−0.5⋅Age+2))

This probability P now gives us a clearer measure of how likely a customer is to buy
based on their income and age.

Let’s calculate the probability for a customer with:

• Income = 50 (in thousands)
• Age = 30

First, compute z:

• z = 1.5*50 − 0.5*30 + 2 = 75 − 15 + 2 = 62

Now apply the logistic function to find P:

• P = 1 / (1 + e−62)
• For large positive values of z, e−z becomes very small, so P≈1 / (1 + 0) = 1
• This means there’s a very high probability (almost 100%) that this customer

will buy the product.

Decision-making

• If P≥0.5, we classify the customer as "likely to buy."
• If P<0.5, we classify the customer as "unlikely to buy."

Regression | FITPED AI

254

The transformation from linear regression to logistic regression allows us to interpret
predictions as probabilities. Instead of just a raw score, we now get a likelihood that
can guide decisions in real-world scenarios.

📝 8.5.10

What does a probability of 90% mean in the context of predicting customer
subscriptions?

• The model is highly confident the customer will subscribe.
• The model guarantees the customer will subscribe.
• The customer has already subscribed.
• The customer won’t subscribe.

📝 8.5.11

Why is it better to predict probabilities instead of just using a score?

• Probabilities provide a measure of confidence.
• Probabilities eliminate incorrect predictions.
• Probabilities don’t require labeled data.
• Probabilities ensure perfect predictions.

📝 8.5.12

Project: Buy or not

We are working for a marketing team that wants to predict whether a customer will
purchase a product based on their annual income and age. The dataset contains
binary outcomes:

• y=1, if the customer purchased the product.
• y=0, if the customer did not purchase.

Using logistic regression, we will predict the probability of purchase for a given
customer and classify them.

Regression | FITPED AI

255

1. Dataset preparation

• The dataset contains features Income and Age, along with a binary target
variable Purchased.

• A synthetic formula is used to create the target variable y based on a linear
combination of Income and Age with added noise.

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report

Step 1: Create the Dataset

np.random.seed(42) # For reproducibility

data = {

 'Income': np.random.randint(30000, 100000, size=100), #

Annual income in money

 'Age': np.random.randint(20, 60, size=100), #

Age in years

}

Binary target variable (purchase or not)

data['Purchased'] = np.where(

 (0.05 * (data['Income'] - 50000)) - (0.03 * (data['Age'] -

30)) + np.random.normal(0, 2, 100) > 0, 1, 0

)

df = pd.DataFrame(data)

2. Split and train

• Split the dataset into training (80%) and testing (20%) subsets.
• A logistic regression model is fit on the training data using Income and Age

as predictors.

Step 2: Split the Dataset

X = df[['Income', 'Age']]

y = df['Purchased']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Step 3: Train Logistic Regression Model

Regression | FITPED AI

256

model = LogisticRegression()

model.fit(X_train, y_train)

3. Predictions are made on the test dataset. Probabilities for class y=1 (purchase)
are also computed.

Step 4: Make Predictions

y_pred = model.predict(X_test)

y_pred_prob = model.predict_proba(X_test)[:, 1] #

Probabilities for class 1

4. Model evaluation - the accuracy, confusion matrix, and classification report.

Step 5: Evaluate the Model

accuracy = accuracy_score(y_test, y_pred)

conf_matrix = confusion_matrix(y_test, y_pred)

report = classification_report(y_test, y_pred)

Display Results

print("Accuracy:", accuracy)

print("\nConfusion Matrix:\n", conf_matrix)

print("\nClassification Report:\n", report)

Program output:
Accuracy: 1.0

Confusion Matrix:

 [[6 0]

 [0 14]]

Classification Report:

 precision recall f1-score support

 0 1.00 1.00 1.00 6

 1 1.00 1.00 1.00 14

 accuracy 1.00 20

 macro avg 1.00 1.00 1.00 20

weighted avg 1.00 1.00 1.00 20

For a customer with specific values for Income and Age, the model predicts whether
they will purchase the product and the associated probability.

Regression | FITPED AI

257

Example Prediction

new_customer = pd.DataFrame({'Income': [70000], 'Age': [35]})

predicted_class = model.predict(new_customer)

predicted_prob = model.predict_proba(new_customer)[:, 1]

print("\nFor a customer with Income $70,000 and Age 35:")

print(f"Predicted Class: {predicted_class[0]} (1 = Purchase, 0

= No Purchase)")

print(f"Probability of Purchase: {predicted_prob[0]:.2f}")

Program output:
For a customer with Income $70,000 and Age 35:

Predicted Class: 1 (1 = Purchase, 0 = No Purchase)

Probability of Purchase: 1.00

Clustering

Chapter 9

Clustering | FITPED AI

259

9.1 K-means clustering

🕮 9.1.1

Clustering is an essential machine learning technique used to group data points
based on their similarity. Unlike classification, clustering is an unsupervised learning
method, meaning it does not rely on labeled data. Instead, the algorithm identifies
inherent patterns or structures in the data, forming clusters that group similar items
together. This is particularly useful in real-world applications like customer
segmentation, document classification, and image compression.

The key goal of clustering is to minimize the intra-cluster distance (distance within
the same cluster) and maximize the inter-cluster distance (distance between
clusters). The two most popular clustering algorithms are K-Means and Hierarchical
Clustering. Each approach has strengths, depending on the dataset's structure and
the problem you aim to solve.

To better understand clustering, imagine you're tasked with organizing books in a
library. Without knowing the categories beforehand, you might group them by genre,
size, or cover color. Similarly, clustering groups data points by their features,
uncovering natural groupings in the dataset.

📝 9.1.2

What type of learning does clustering belong to?

• Unsupervised learning
• Supervised learning
• Reinforcement learning
• Semi-supervised learning

📝 9.1.3

What is the primary goal of clustering?

• To group similar data points together.
• To label data points.
• To classify new data points.
• To predict numerical outcomes.

Clustering | FITPED AI

260

🕮 9.1.4

Why is clustering important? Consider a marketing example: a company wants to
create targeted campaigns for its customers. Without prior knowledge, grouping
customers based on their purchasing habits, demographics, or browsing history can
reveal distinct segments like "frequent buyers" or "budget-conscious customers."
These insights drive better decision-making.

Clustering also finds applications in fields like biology (gene grouping), astronomy
(galaxy classification), and cybersecurity (malware detection). By uncovering hidden
patterns, clustering enables more effective resource allocation and strategy
formulation. Moreover, its unsupervised nature makes it versatile, especially when
labeled data is unavailable or expensive to obtain.

Clustering doesn't always give perfectly defined groups. It's important to remember
that the quality of the clusters depends on the algorithm used and the dataset.
Evaluation metrics like the Silhouette Score or Davies-Bouldin Index help determine
how well the clustering performed.

📝 9.1.5

Select all correct applications of clustering.

• Customer segmentation.
• Malware detection.
• Predicting stock prices.
• Calculating the area of a triangle.

📝 9.1.6

K-Means clustering

K-Means is one of the most widely used clustering algorithms due to its simplicity
and efficiency. The idea is to partition the dataset into k clusters, where each data
point belongs to the cluster with the nearest centroid (average of all points in that
cluster). The process involves the following steps:

1. Initialization - select k initial centroids randomly.
2. Assign each data point to the nearest centroid, forming k clusters.
3. Calculate the new centroid for each cluster by averaging the data points

within it.
4. Iterate steps 2 and 3 until centroids stabilize (no significant change).

Clustering | FITPED AI

261

K-Means requires choosing the value of k beforehand. Techniques like the Elbow
Method help determine the optimal k by analyzing the sum of squared distances
between data points and their centroids. The ideal k minimizes this value without
overfitting.

Example

To understand K-Means better, let's go through an example. Suppose we have 6
points: (2, 3), (3, 3), (6, 8), (7, 9), (1, 2), and (8, 9), and we want to divide them into 2
clusters (k=2):

1. Initialize centroids - the simplest method is to randomly select k points from
the dataset to serve as the initial centroids. These points are chosen without
any specific pattern, and the algorithm then starts from these points - start
with (3, 3) as Centroid 1 and (8, 9) as Centroid 2.

2. Compute the Euclidean distance of each point to the centroids. The
Euclidean distance between two points (x1, y1) and (x2, y2) in a 2D space is
calculated using the formula:

Where:

• d is the distance between the two points.
• (x1,y1) and (x2,y2) are the coordinates of the points.

Assign each point to the nearest centroid:

Point (2, 3):

• Distance to Centroid 1 (3, 3): d = sqrt ((3−2)2+(3−3)2) = 1
• Distance to Centroid 2 (8, 9): d = sqrt ((8-2)2+(9-3)2) = 8.49
• belogs to Centroid 1

Point (3, 3):

• Distance to Centroid 1 (3, 3): d = sqrt ((3−3)2+(3−3)2) = 0
• Distance to Centroid 2 (8, 9): d = sqrt ((8-3)2+(9-3)2) = 7.81
• belogs to Centroid 1

Clustering | FITPED AI

262

Point (6, 8):

• Distance to Centroid 1 (3, 3): d = sqrt ((6−3)2+(8−3)2) = 5.83
• Distance to Centroid 2 (8, 9): d = sqrt ((8-6)2+(9-8)2) = 2.24
• belogs to Centroid 2

Point (7, 9):

• Distance to Centroid 1 (3, 3): d = sqrt ((7−3)2+(9−3)2) = 7.21
• Distance to Centroid 2 (8, 9): d = sqrt ((8-7)2+(9-9)2) = 1
• belogs to Centroid 2

Point (1, 2):

• Distance to Centroid 1 (3, 3): d = sqrt ((1−3)2+(2−3)2) = 2.24
• Distance to Centroid 2 (8, 9): d = sqrt ((8-1)2+(9-2)2) = 9.9
• belogs to Centroid 1

Point (8, 9):

• Distance to Centroid 1 (3, 3): d = sqrt ((8−3)2+(9−3)2) = 7.81
• Distance to Centroid 2 (8, 9): d = sqrt ((8-1)2+(9-2)2) = 0
• belogs to Centroid 2

Update centroids

For each cluster, calculate the mean of its points:

• Cluster 1 centroid: (2 + 3 + 1) / 3,(3 + 3 + 2) / 3 = (2, 2.67)
• Cluster 2 centroid: (6 + 7 + 8) / 3,(8 + 9 + 9) / 3 = (7, 8.67)

Reassign points by recalculate centroids until stable - if the cluster membership of
points does not change during the recalculation, it means that they are stable

Clustering | FITPED AI

263

Solution by code:

Import necessary libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

Define the data points (6 points in 2D space)

data_points = np.array([[2, 3], [3, 3], [6, 8], [7, 9], [1,

2], [8, 9]])

Initialize the KMeans algorithm with 2 clusters (k=2)

kmeans = KMeans(n_clusters=2)

Fit the KMeans algorithm to the data points

kmeans.fit(data_points)

Get the centroids of the clusters

centroids = kmeans.cluster_centers_

Get the labels (which cluster each point belongs to)

labels = kmeans.labels_

Create a grid of points to visualize decision boundaries

x_min, x_max = data_points[:, 0].min() - 1, data_points[:,

0].max() + 1

y_min, y_max = data_points[:, 1].min() - 1, data_points[:,

1].max() + 1

xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),

np.arange(y_min, y_max, 0.1))

Predict the cluster for each point in the grid

Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

Plot the decision boundary by filling the background with

the predicted clusters

plt.contourf(xx, yy, Z, alpha=0.3, cmap='viridis')

Plot the points and the centroids

plt.scatter(data_points[:, 0], data_points[:, 1], c=labels,

cmap='viridis', marker='o', label='Data Points')

Plot the centroids

Clustering | FITPED AI

264

plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=200,

alpha=0.5, marker='x', label='Centroids')

Add labels and title

plt.xlabel('X')

plt.ylabel('Y')

plt.title('K-Means Clustering (k=2) with Decision Boundaries')

plt.legend()

Display the plot

plt.show()

Program output:

📝 9.1.7

What is the purpose of centroids in K-Means clustering?

• To represent the center of a cluster.
• To initialize the number of clusters.
• To label data points.
• To calculate the distance between clusters.

Clustering | FITPED AI

265

📝 9.1.8

Project: Understanding clusterisation

(by https://www.geeksforgeeks.org/k-means-clustering-introduction/)

Lets go to create 3 groups of values as random points

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

X,y = make_blobs(n_samples = 500,n_features = 2,centers =

3,random_state = 23)

fig = plt.figure(0)

plt.grid(True)

plt.scatter(X[:,0],X[:,1])

plt.show()

Program output:

Initialize random centers

• The code initializes three cluster centers. It sets random cluster centers
within the specified range and creates an empty list of points for each
cluster.

https://www.geeksforgeeks.org/k-means-clustering-introduction/

Clustering | FITPED AI

266

Number of clusters

k = 3

Initialize an empty dictionary to store clusters

clusters = {}

Set a random seed for reproducibility

np.random.seed(23)

Iterate through each cluster to initialize its center

for idx in range(k):

 # Generate random points for the center within a specified

range

 center = 2 * (2 * np.random.random((X.shape[1],)) - 1)

 # Create an empty list to store the points of the cluster

 points = []

 # Define the cluster with its center and an empty points

list

 cluster = {

 'center': center,

 'points': []

 }

 # Add the cluster to the clusters dictionary

 clusters[idx] = cluster

Output the initialized clusters

print(clusters)

Program output:
{0: {'center': array([0.06919154, 1.78785042]), 'points': []},

1: {'center': array([1.06183904, -0.87041662]), 'points':

[]}, 2: {'center': array([-1.11581855, 0.74488834]),

'points': []}}

Plot the random initialize center with data points

plt.scatter(X[:,0],X[:,1])

plt.grid(True)

for i in clusters:

Clustering | FITPED AI

267

 center = clusters[i]['center']

 plt.scatter(center[0],center[1],marker = '*',c = 'red')

plt.show()

Program output:

Define Euclidean distance

def distance(p1,p2):

 return np.sqrt(np.sum((p1-p2)**2))

Functions assign data points to the nearest cluster center, and updates cluster
centers based on the mean of assigned points in K-means clustering.

Assign each point to the nearest cluster based on distance

def assign_clusters(X, clusters):

 for idx in range(X.shape[0]):

 dist = [] # List to store distances to all cluster

centers

 curr_x = X[idx] # Current point

 # Calculate the distance to each cluster center

 for i in range(k):

 dis = distance(curr_x, clusters[i]['center'])

 dist.append(dis)

Clustering | FITPED AI

268

 # Assign the point to the nearest cluster

 curr_cluster = np.argmin(dist) # Index of the cluster

with minimum distance

 clusters[curr_cluster]['points'].append(curr_x) # Add

point to corresponding cluster

 return clusters

Recalculate the cluster centers based on assigned points

def update_clusters(X, clusters):

 for i in range(k):

 points = np.array(clusters[i]['points']) # Points

assigned to the cluster

 # If there are points assigned to the cluster, update

the center

 if points.shape[0] > 0:

 new_center = points.mean(axis=0) # Calculate the

new center as the mean of points

 clusters[i]['center'] = new_center # Update the

cluster center

 clusters[i]['points'] = [] # Reset the points

list for the next iteration

 return clusters

The function to Predict the cluster for the datapoints

Function to predict the cluster for each point based on the

nearest centroid

def pred_cluster(X, clusters):

 pred = [] # List to store the predicted cluster for each

point

 # Loop through each point in the dataset

 for i in range(X.shape[0]):

 dist = [] # List to store the distances to each

cluster center

 # Calculate the distance to each cluster center

 for j in range(k):

 dist.append(distance(X[i], clusters[j]['center']))

Clustering | FITPED AI

269

 # Assign the point to the nearest cluster based on the

minimum distance

 pred.append(np.argmin(dist)) # The cluster index with

the minimum distance

 return pred

Process - assign, update, predict

Assign clusters to the points based on the current centroids

clusters = assign_clusters(X, clusters)

Update the centroids based on the current points in each

cluster

clusters = update_clusters(X, clusters)

Predict the cluster for each point based on the nearest

centroid

pred = pred_cluster(X, clusters)

plt.scatter(X[:,0],X[:,1],c = pred)

for i in clusters:

 center = clusters[i]['center']

 plt.scatter(center[0],center[1],marker = '^',c = 'red')

plt.show()

Program output:

Clustering | FITPED AI

270

The plot shows data points colored by their predicted clusters. The red markers
represent the updated cluster centers after the K-means clustering algorithm.

9.2 Normalisation

🕮 9.2.1

Importance of data normalization

In machine learning, data normalization is crucial when features in a dataset have
different scales. For instance, one feature could range from 0 to 1000 while another
ranges from 0 to 1. Without normalization, algorithms that calculate distances might
assign greater importance to the larger-scale feature, distorting the results.

Normalization scales all features to a similar range, usually between 0 and 1 or with
zero mean and unit variance (standardization). This process ensures that all features
contribute equally to the analysis.

Clustering algorithms, such as K-Means, use distances to group data points. Without
normalization:

• Features with larger scales dominate distance calculations.
• The clustering output may incorrectly group data based on the dominant

feature.

With normalized data:

• Each feature contributes equally.
• Clusters better represent the inherent structure of the data.

📝 9.2.2

Why is data normalization important in clustering?

• It ensures that features contribute equally to distance calculations.
• It makes the data more complex.
• It reduces the number of clusters.
• It improves the algorithm's speed.

Clustering | FITPED AI

271

📝 9.2.3

What are the benefits of data normalization?

• Prevents larger-scale features from dominating.
• Improves clustering accuracy.
• Eliminates the need for feature selection.
• Guarantees fewer clusters.

📝 9.2.4

Normalization methods

Normalization methods transform data to a specific scale or distribution. Below are
common normalization techniques, their purposes, and how to implement them in
Python.

1. Min-max normalization

Scales data to a range, typically [0, 1]. It is sensitive to outliers. x is element, X is set.

xnew = (xoriginal − min(X)) / (max(X) − min(X))

When to use:

• When features need to be scaled within a specific range.
• Suitable for machine learning models sensitive to the magnitude of data

(e.g., K-Means, Gradient Descent).

from sklearn.preprocessing import MinMaxScaler

import numpy as np

data = np.array([[1, 2], [3, 4], [5, 6]])

scaler = MinMaxScaler()

normalized_data = scaler.fit_transform(data)

print(data)

print(normalized_data)

Program output:
[[1 2]

 [3 4]

 [5 6]]

[[0. 0.]

 [0.5 0.5]

 [1. 1.]]

Clustering | FITPED AI

272

2. Standardization (Z-score normalization)

Scales data to have a mean (μ) of 0 and a standard deviation (σ) of 1.

xnew = (xoriginal − μ) / σ

When to use:

• When features need to be standardized (e.g., Principal Component Analysis).
• Robust to outliers compared to Min-Max normalization.

from sklearn.preprocessing import StandardScaler

import numpy as np

data = np.array([[1, 2], [3, 4], [5, 6]])

scaler = StandardScaler()

standardized_data = scaler.fit_transform(data)

print(data)

print(standardized_data)

Program output:
[[1 2]

 [3 4]

 [5 6]]

[[-1.22474487 -1.22474487]

 [0. 0.]

 [1.22474487 1.22474487]]

3. Max absolute scaling

Scales each feature by its maximum absolute value. The range is [-1, 1].

xnew = xoriginal / max(∣X∣) or xnew = xoriginal / max(abs(X))

When to use:

• For datasets with positive and negative values where the magnitude is
important.

from sklearn.preprocessing import MaxAbsScaler

import numpy as np

data = np.array([[1, -2], [3, -4], [5, -6]])

scaler = MaxAbsScaler()

Clustering | FITPED AI

273

max_abs_scaled_data = scaler.fit_transform(data)

print(data)

print(max_abs_scaled_data)

Program output:
[[1 -2]

 [3 -4]

 [5 -6]]

[[0.2 -0.33333333]

 [0.6 -0.66666667]

 [1. -1.]]

📝 9.2.5

What is the typical range of values after applying Min-Max normalization?

• [0, 1]
• [-1, 1]
• [0, ∞]
• No fixed range

📝 9.2.6

Which of the following are characteristics of Min-Max normalization?

• It scales data to a specific range
• It is sensitive to outliers
• It is robust to outliers
• It always centers the data at 0

📝 9.2.7

After Z-score normalization, what are the mean and standard deviation of the data?

• Mean = 0, Standard deviation = 1
• Mean = 1, Standard deviation = 1
• Mean = 0, Standard deviation = 0
• Mean = 1, Standard deviation = 0

Clustering | FITPED AI

274

📝 9.2.8

Which of the following are true about Z-score normalization?

• It centers the data around zero
• It standardizes data to have unit variance
• It is robust to outliers
• It requires the data to be strictly positive

📝 9.2.9

What is the primary characteristic of Max absolute scaling?

• Scales values based on their maximum absolute value
• Scales values to a range of [0, 1]
• Centers the data at zero
• It only works for positive values

📝 9.2.10

Which of the following are true about Max absolute scaling?

• It scales values between [-1, 1]
• It maintains the sparsity of data
• It is robust to outliers
• It centers the data at zero

📝 9.2.11

Logarithmic normalization

Logarithmic normalization is a preprocessing technique often used to handle data
with a wide range of values. Many real-world datasets exhibit skewed distributions,
where a few values dominate the range. This can cause issues in clustering, as
algorithms like K-Means rely on Euclidean distance, which is sensitive to large
variations. Logarithmic normalization transforms such data into a compressed scale
by applying a log function, reducing the effect of extreme values and making
distributions more manageable for clustering.

For example, raw data like [1, 10, 100, 1000] would be transformed into [0, 1, 2, 3]
using logarithmic normalization (logarithm base 10).

Clustering | FITPED AI

275

The logarithmic normalization is important for clustering because:

• It corrects the disproportionate impact of outliers, ensuring that the
clustering algorithm focuses on meaningful patterns.

• By reducing the data range, it helps clustering algorithms form compact and
distinct clusters.

• Log-transformed data often aligns better with the assumptions of statistical
or machine learning models.

Consider a dataset with features that differ greatly in magnitude. Without
normalization, smaller-scale features might get overshadowed by larger ones,
leading to poor clustering performance. Consider a dataset with income ranging from
$10,000 to $1,000,000. Without normalization, clustering may fail to recognize
patterns among lower-income data. After applying logarithmic normalization,
clusters can form based on proportional differences rather than absolute values.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.preprocessing import FunctionTransformer

Generate data

np.random.seed(42)

X = np.concatenate([

 np.random.exponential(scale=1.0, size=(100, 2)), #

Cluster 1

 np.random.exponential(scale=10.0, size=(100, 2)) #

Cluster 2

])

Visualize original data

plt.scatter(X[:, 0], X[:, 1], s=20, color='blue')

plt.title("Original Data (Wide Range)")

plt.show()

Clustering without normalization

kmeans_no_norm = KMeans(n_clusters=2, random_state=42).fit(X)

plt.scatter(X[:, 0], X[:, 1], c=kmeans_no_norm.labels_,

cmap='viridis', s=20)

plt.title("Clustering Without Normalization")

plt.show()

Logarithmic normalization

Clustering | FITPED AI

276

log_transformer = FunctionTransformer(np.log1p, validate=True)

X_log = log_transformer.transform(X)

Visualize log-transformed data

plt.scatter(X_log[:, 0], X_log[:, 1], s=20, color='green')

plt.title("Logarithmically Normalized Data")

plt.show()

Clustering with normalization

kmeans_log_norm = KMeans(n_clusters=4,

random_state=42).fit(X_log)

plt.scatter(X_log[:, 0], X_log[:, 1],

c=kmeans_log_norm.labels_, cmap='viridis', s=20)

plt.title("Clustering with Logarithmic Normalization")

plt.show()

Program output:

Clustering | FITPED AI

277

Clustering | FITPED AI

278

📝 9.2.12

What is the primary purpose of logarithmic normalization in clustering?

• To handle skewed data
• To increase data range
• To remove all outliers
• To split data into predefined clusters

📝 9.2.13

Which of the following are true about logarithmic normalization?

• It compresses wide-ranging data
• It is suitable for skewed distributions
• It removes noise completely
• It works only with integer data

Clustering | FITPED AI

279

9.3 Cluster quality

📝 9.3.1

Elbow method

When performing clustering on a dataset, one of the most critical questions is: "How
many clusters should we choose?" Choosing the optimal number of clusters is
essential because the wrong choice can lead to poor model performance and
unreliable insights. A popular and simple method for identifying the ideal number of
clusters is the Elbow method. This method is visual and relies on plotting the sum of
squared distances (inertia) from each point to its assigned cluster center for various
numbers of clusters.

To apply the Elbow method, we begin by fitting the clustering algorithm (e.g., K-
means) with a range of cluster numbers, such as from 1 to 10. After fitting the
algorithm for each cluster number, we calculate the inertia (also called the within-
cluster sum of squares). Inertia measures how tightly the data points are clustered
around the center. The smaller the inertia, the better the data points fit within their
respective clusters.

The key to the Elbow method lies in the plot of inertia against the number of clusters.
As the number of clusters increases, the inertia decreases because more clusters
generally result in better fits. However, after a certain point, adding more clusters
results in only marginal improvements in inertia. The "elbow" of the plot is the point
where the rate of decrease slows down. This elbow indicates the ideal number of
clusters, as beyond this point, adding more clusters does not significantly improve
the clustering.

For example, if we plot inertia for cluster counts from 1 to 10 and notice a sharp drop
from 1 to 4 clusters, followed by a slow and steady decrease, the "elbow" is at 4.
Thus, 4 would be the optimal number of clusters for that dataset. This method is
widely used because of its simplicity, although it may not always work perfectly in
more complex datasets.

Example

For different values of k (from 1 to 10), K-means is run on the data, and the inertia
(sum of squared distances between data points and their assigned cluster centers)
is recorded.

The inertia values are plotted against the number of clusters, and the "elbow" can be
visually inspected to determine the optimal number of clusters.

The plot will display a curve showing the inertia for different numbers of clusters.
The "elbow" point, where the decrease in inertia slows down, suggests the optimal
number of clusters. For the synthetic data with 5 centers, this will likely be around
k=5, but sometimes are other values correct (in this case it is 3 or 4).

Clustering | FITPED AI

280

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.datasets import make_blobs

Generate random data with 5 centers (clusters)

X, _ = make_blobs(n_samples=400, centers=5, random_state=42)

Plot the generated data

plt.figure(figsize=(8, 6))

plt.scatter(X[:, 0], X[:, 1], s=30, color='b', label='Data

points')

plt.title('Generated Data with 5 Centers')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.grid(True)

plt.show()

Use the elbow method to find the optimal number of clusters

inertia = []

Try different numbers of clusters from 1 to 10

for k in range(1, 11):

 kmeans = KMeans(n_clusters=k, random_state=42)

 kmeans.fit(X)

 inertia.append(kmeans.inertia_)

Plot the elbow method graph

plt.figure(figsize=(8, 6))

plt.plot(range(1, 11), inertia, marker='o', color='b')

plt.title('Elbow Method for Optimal Number of Clusters')

plt.xlabel('Number of Clusters')

plt.ylabel('Inertia (Within-cluster sum of squares)')

plt.grid(True)

plt.show()

Clustering | FITPED AI

281

Program output:

Clustering | FITPED AI

282

📝 9.3.2

What does the "elbow" in the Elbow method plot represent?

• The point where the rate of decrease in inertia slows down
• The point where inertia starts to increase rapidly
• The point where the number of clusters reaches its maximum
• The point where the clusters are not distinguishable

📝 9.3.3

Which of the following are true about the Elbow method?

• It helps identify the optimal number of clusters by plotting inertia against
cluster numbers

• The "elbow" in the plot indicates the ideal number of clusters
• It requires calculating the Silhouette score for each cluster count
• Adding more clusters after the elbow significantly improves the model's

performance

📝 9.3.4

Silhouette score

Another effective method for determining the optimal number of clusters is by using
the Silhouette score. Unlike the Elbow method, which only measures the within-
cluster distance, the Silhouette score takes both cohesion and separation into
account. The cohesion measures how close the data points in a cluster are to one
another, while the separation measures how distinct a cluster is from others. A high
Silhouette score means that the clusters are well-separated and tightly packed,
indicating a good clustering result.

The Silhouette score is calculated for each data point, and its overall value is the
average of all individual scores. It ranges from -1 to 1, where:

• A score close to 1 indicates that the data points are well-clustered, with good
separation from other clusters.

• A score close to 0 indicates that the data points are on or near the decision
boundary between clusters.

• A score close to -1 suggests that the data points might have been assigned
to the wrong cluster.

Clustering | FITPED AI

283

To use the Silhouette Score to determine the best number of clusters, we compute
the score for a range of cluster numbers (e.g., from 2 to 10 clusters). After plotting
the scores for each cluster number, we select the number of clusters that maximizes
the Silhouette score. This method is valuable because it not only considers how well
the data fits the chosen clusters but also ensures that clusters are well-separated.

For example, if we test different cluster numbers and find that the Silhouette score
peaks at 3 clusters, we conclude that 3 is the best choice for the dataset. This
method is particularly useful when the dataset has well-defined clusters and can be
applied to various clustering algorithms like K-means, DBSCAN, or hierarchical
clustering.

By using it to compare different cluster counts, we can make more informed
decisions about the optimal number of clusters for our data.

Example

The silhouette score is calculated for different numbers of clusters (from 2 to 10).
The silhouette score measures how well each point fits within its cluster, with higher
values indicating better-defined clusters.

The best number of clusters is determined by selecting the k with the highest
silhouette score - we can print values or visualise differences between various
numbers of clusters.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.datasets import make_blobs

from sklearn.metrics import silhouette_score,

silhouette_samples

Generate random data with 5 centers (clusters)

X, _ = make_blobs(n_samples=400, centers=5, random_state=42)

Plot the generated data

plt.figure(figsize=(8, 6))

plt.scatter(X[:, 0], X[:, 1], s=30, color='b', label='Data

points')

plt.title('Generated Data with 5 Centers')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.grid(True)

plt.show()

Clustering | FITPED AI

284

Initialize variables to track the best silhouette score and

number of clusters

best_silhouette_score = -1

best_n_clusters = 0

silhouette_scores = []

Try different numbers of clusters from 2 to 10 (silhouette

score is not defined for 1 cluster)

for k in range(2, 11):

 kmeans = KMeans(n_clusters=k, random_state=42)

 kmeans.fit(X)

 # Calculate silhouette score for the current k

 score = silhouette_score(X, kmeans.labels_)

 silhouette_scores.append(score)

 # Track the best silhouette score and the corresponding

number of clusters

 if score > best_silhouette_score:

 best_silhouette_score = score

 best_n_clusters = k

Print the best number of clusters and corresponding

silhouette score

print(f"Best number of clusters: {best_n_clusters}")

print(f"Best silhouette score: {best_silhouette_score:.4f}")

Plot silhouette scores for each k

plt.figure(figsize=(8, 6))

plt.plot(range(2, 11), silhouette_scores, marker='o',

color='b')

plt.title('Silhouette Score for Different Numbers of

Clusters')

plt.xlabel('Number of Clusters')

plt.ylabel('Silhouette Score')

plt.grid(True)

plt.show()

Visualize the clustering quality with the best number of

clusters

best_kmeans = KMeans(n_clusters=best_n_clusters,

random_state=42)

best_kmeans.fit(X)

Clustering | FITPED AI

285

Plot the data points with the cluster centers

plt.figure(figsize=(8, 6))

plt.scatter(X[:, 0], X[:, 1], c=best_kmeans.labels_,

cmap='viridis', s=30)

plt.scatter(best_kmeans.cluster_centers_[:, 0],

best_kmeans.cluster_centers_[:, 1],

 marker='x', color='red', s=200, label='Cluster

Centers')

plt.title(f'K-Means Clustering with {best_n_clusters}

Clusters')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.grid(True)

plt.legend()

plt.show()

Program output:

Best number of clusters: 4
Best silhouette score: 0.7235

Clustering | FITPED AI

286

Clustering | FITPED AI

287

The silhouette score plot showed the silhouette scores for different numbers of
clusters. The optimal number of clusters corresponds to the peak in the silhouette
score. The final plot will show the clustering results for the best number of clusters,
with the cluster centers marked in red. The clusters should be well-separated if the
silhouette score is high.

Silhouette analysis

Silhouette analysis for visualizing how well the data points fit within their clusters,
uses the silhouette_samples function from sklearn.metrics. It provides a silhouette
score for each individual data point, which can be plotted to visualize the quality of
clustering and amount of elements for each point.

Silhouette Analysis: plot silhouette scores for each sample

in the dataset

silhouette_avg = silhouette_score(X, best_kmeans.labels_)

sample_silhouette_values = silhouette_samples(X,

best_kmeans.labels_)

Plot the silhouette analysis

plt.figure(figsize=(8, 6))

y_lower = 10

for i in range(best_n_clusters):

 # Aggregate the silhouette scores for samples belonging to

cluster i

 cluster_silhouette_values =

sample_silhouette_values[best_kmeans.labels_ == i]

 cluster_silhouette_values.sort()

 # Determine the size of the cluster

 size_cluster = cluster_silhouette_values.shape[0]

 # Plot the silhouette scores for the cluster

 plt.barh(range(y_lower, y_lower + size_cluster),

cluster_silhouette_values,

 height=1.0, edgecolor='none', label=f'Cluster

{i+1}')

 y_lower += size_cluster

Add a vertical line for average silhouette score

plt.axvline(x=silhouette_avg, color="red", linestyle="--")

Add labels and title

plt.title(f'Silhouette Analysis for {best_n_clusters}

Clusters')

Clustering | FITPED AI

288

plt.xlabel('Silhouette Score')

plt.ylabel('Cluster')

plt.grid(True)

plt.legend(loc='best')

plt.show()

Program output:

For experimentation with other number of clusters you can use following code:

other_n_clusters = 6

Visualize the clustering quality with the best number of

clusters

other_kmeans = KMeans(n_clusters=other_n_clusters,

random_state=42)

other_kmeans.fit(X)

Plot the data points with the cluster centers

plt.figure(figsize=(8, 6))

Clustering | FITPED AI

289

plt.scatter(X[:, 0], X[:, 1], c=other_kmeans.labels_,

cmap='viridis', s=30)

plt.scatter(other_kmeans.cluster_centers_[:, 0],

other_kmeans.cluster_centers_[:, 1],

 marker='x', color='red', s=200, label='Cluster

Centers')

plt.title(f'K-Means Clustering with {other_n_clusters}

Clusters')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.grid(True)

plt.legend()

plt.show()

Silhouette Analysis: plot silhouette scores for each sample

in the dataset

silhouette_avg = silhouette_score(X, other_kmeans.labels_)

sample_silhouette_values = silhouette_samples(X,

other_kmeans.labels_)

Plot the silhouette analysis

plt.figure(figsize=(8, 6))

y_lower = 10

for i in range(other_n_clusters):

 # Aggregate the silhouette scores for samples belonging to

cluster i

 cluster_silhouette_values =

sample_silhouette_values[other_kmeans.labels_ == i]

 cluster_silhouette_values.sort()

 # Determine the size of the cluster

 size_cluster = cluster_silhouette_values.shape[0]

 # Plot the silhouette scores for the cluster

 plt.barh(range(y_lower, y_lower + size_cluster),

cluster_silhouette_values,

 height=1.0, edgecolor='none', label=f'Cluster

{i+1}')

 y_lower += size_cluster

Add a vertical line for average silhouette score

plt.axvline(x=silhouette_avg, color="red", linestyle="--")

Add labels and title

Clustering | FITPED AI

290

plt.title(f'Silhouette Analysis for {other_n_clusters}

Clusters')

plt.xlabel('Silhouette Score')

plt.ylabel('Cluster')

plt.grid(True)

plt.legend(loc='best')

plt.show()

Program output:

Clustering | FITPED AI

291

📝 9.3.5

What does a Silhouette score close to 1 indicate?

• The clusters are well-separated and tightly packed
• The clusters are poorly separated
• The data points are close to the decision boundary
• The clusters overlap significantly

📝 9.3.6

Which statements are true about the Silhouette score?

• A Silhouette score close to 0 suggests that the data points are on the
boundary between clusters

• The Silhouette score measures both cohesion and separation of clusters
• The Silhouette score ranges from 0 to 10
• A Silhouette score close to -1 indicates that the data points are well-

clustered

Clustering | FITPED AI

292

9.4 Clustering algorithm types

🕮 9.4.1

Hierarchical clustering

Hierarchical clustering is a method that builds a hierarchy of clusters. This method
works by recursively merging or splitting clusters. The result is a tree-like structure,
often represented as a dendrogram. This approach is particularly useful when we
need to understand the relationships between clusters and have no prior knowledge
of how many clusters to expect. For example, in biology, hierarchical clustering can
be used to understand the relationship between different species based on their
characteristics.

There are two main approaches in hierarchical clustering:

• Agglomerative hierarchical clustering starts by treating each data point as its
own cluster and then successively merges the closest clusters.

• Divisive hierarchical clustering works in the opposite direction, starting with
one large cluster and iteratively splitting it into smaller clusters.

To build the hierarchy, the similarity between clusters is computed at each step. This
similarity can be measured using various metrics like Euclidean distance or cosine
similarity. The hierarchical process is represented as a dendrogram, where the leaves
represent the individual data points and the nodes represent the merged clusters.
The height of the branches in the dendrogram indicates the similarity between
clusters. A cut can be made at any level to choose the desired number of clusters.

Hierarchical clustering is useful when we need a comprehensive view of how data
points are related to one another. It is particularly helpful when the number of clusters
is not known in advance or when we want to understand the hierarchy of data. For
example, in market segmentation, hierarchical clustering can reveal the hierarchy of
consumer preferences.

Clustering | FITPED AI

293

📝 9.4.2

Which of the following is true about hierarchical clustering?

• It creates a tree-like structure called a dendrogram.
• It requires the number of clusters to be defined in advance.
• It always produces a flat clustering solution.
• It splits clusters starting from individual data points.

📝 9.4.3

Hierarchical agglomerative clustering

Hierarchical agglomerative clustering is the bottom-up approach, is a clustering
method that doesn't require specifying the number of clusters in advance. It starts
by treating each data point as a singleton cluster and repeatedly merges the closest
clusters until all data points belong to a single cluster. This approach provides a more
informative structure than the unstructured set of clusters from flat clustering.

Algorithm steps:

1. Start with a dataset (d1, d2, ..., dn) of size n.
2. Compute the distance matrix: for each pair of points (di, dj), compute their

distance (distance[di, dj]). As the matrix is symmetric, calculate only the
lower half.

3. Initially, treat each data point as a singleton cluster.
4. Repeatedly merge the two closest clusters and update the distance matrix.
5. Continue merging until only one cluster remains.

This process forms a hierarchy that can be visualized as a dendrogram, providing
insight into the data's structure.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import AgglomerativeClustering

from scipy.cluster.hierarchy import dendrogram, linkage

Randomly chosen dataset

X = np.array([[1, 2], [1, 4], [1, 0],

 [4, 2], [4, 4], [4, 0]])

Perform hierarchical/agglomerative clustering

Clustering | FITPED AI

294

clustering = AgglomerativeClustering(n_clusters=None,

distance_threshold=0)

clustering.fit(X)

Create a linkage matrix using scipy

Z = linkage(X, 'ward')

Plot the dendrogram to visualize the clustering steps

plt.figure(figsize=(10, 7))

dendrogram(Z)

plt.title("Dendrogram of Hierarchical Agglomerative

Clustering")

plt.xlabel("Index of Data Points")

plt.ylabel("Distance")

plt.show()

Optionally print the class labels

print(clustering.labels_)

Program output:

[5 4 3 1 2 0]

Clustering | FITPED AI

295

In the previous code using AgglomerativeClustering from scikit-learn, the algorithm
uses Euclidean distance by default, and the complete linkage method is typically
used for merging clusters unless specified otherwise. Therefore, the similarity (or
distance) is based on the Euclidean distance between the clusters, and the algorithm
merges the closest clusters iteratively.

📝 9.4.4

Hierarchical divisive clustering

Hierarchical divisive clustering is the top-down approach, is a clustering algorithm
that recursively divides a large cluster into smaller sub-clusters. Unlike
agglomerative clustering, which starts with individual data points and merges them,
divisive clustering begins with the entire dataset as one large cluster and splits it
iteratively into smaller clusters until every data point is isolated in its own singleton
cluster.

Algorithm:

1. Start with one cluster containing all data points.
2. Split the cluster based on some criteria to create two smaller clusters.
3. Recursively split the resulting clusters until all the data points are in

individual clusters.

This algorithm does not require you to specify the number of clusters, as it continues
to divide the data until each point is isolated. The number of final clusters depends
on the stopping criterion used, such as a maximum depth of splits or a minimum
cluster size.

To divide clusters, we need to determine how to split them. The key challenge here
is defining a distance measure between clusters. Different methods of measuring
inter-cluster distance will result in different ways of dividing the data. Some common
distance metrics include:

1. Min distance (single linkage) is defined as the minimum distance between
any pair of points, one from each cluster. This method tends to produce long,
thin clusters, as it merges clusters based on the closest pair of points.

2. Max distance (complete linkage) is the maximum distance between any two
points, one from each cluster. This method results in more compact clusters,
as it considers the farthest points in each cluster.

3. Group average (average linkage) is the average distance between all pairs of
points, one from each cluster. This method is a compromise between single
and complete linkage, creating clusters that are balanced in size and density.

4. Ward’s method is based on minimizing the increase in squared error when
two clusters are merged. It prioritizes merging clusters that lead to the

Clustering | FITPED AI

296

smallest increase in variance and tends to create more compact and
spherical clusters.

Each of these methods can affect the final clustering result. For instance, the Min
distance method might produce elongated clusters, while Ward’s method creates
more compact clusters.

To compare the results of the four distance metrics mentioned (Min distance, Max
distance, Group average, and Ward's method) in hierarchical divisive clustering, we'll
use AgglomerativeClustering from scikit-learn with different linkage methods. I'll
generate a synthetic dataset with enough size and complexity to show the
differences in clustering

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

from scipy.cluster.hierarchy import dendrogram, linkage

Create a synthetic dataset with 1000 samples and 2 features

X, _ = make_blobs(n_samples=1000, centers=4, cluster_std=0.60,

random_state=42)

Function to perform hierarchical clustering and plot the

dendrogram

def plot_dendrogram(X, linkage_methods):

 plt.figure(figsize=(12, 10))

 for i, linkage_method in enumerate(linkage_methods):

 # Perform linkage for hierarchical clustering

 Z = linkage(X, method=linkage_method)

 plt.subplot(2, 2, i + 1)

 dendrogram(Z)

 plt.title(f"Linkage: {linkage_method}")

 plt.xlabel("Sample Index")

 plt.ylabel("Distance")

 plt.tight_layout()

 plt.show()

List of different linkage methods

linkage_methods = ['single', 'complete', 'average', 'ward']

Clustering | FITPED AI

297

Plot dendrograms for all the methods

plot_dendrogram(X, linkage_methods)

Program output:

📝 9.4.5

Which of the following distance metrics will likely create more compact clusters in
Divisive hierarchical clustering?

• Ward’s method
• Min distance
• Max distance
• Group average

Clustering | FITPED AI

298

📝 9.4.6

DBSCAN

DBSCAN is a density-based clustering algorithm that groups together closely packed
points and labels points in low-density regions as noise. Partitioning methods (like
K-means) and hierarchical clustering work to find spherical clusters or convex
clusters.They are only suitable for compact and well-separated clusters. In addition,
they are also seriously affected by the presence of noise and outliers in the data.
DBSCAN is widely used in tasks like spatial data analysis, anomaly detection, and
environmental monitoring.

• source: https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-
based-clustering/

The figure above shows a data set containing non-convex shape clusters and
outliers. Given such data, the k-means algorithm has difficulties in identifying these
clusters with arbitrary shapes.

DBSCAN requires two parameters:

• eps defines the neighborhood around a data point. If the distance between
two points is less than or equal to ‘eps’, they are considered neighbors. A
small eps value may label many points as outliers, while a large eps value
may cause clusters to merge, resulting in most points being grouped
together. One way to determine an appropriate eps value is by using the k-
distance graph.

• MinPts is the minimum number of neighbors (data points) required within
the eps radius. Larger datasets typically require a higher MinPts value. As a
general rule, MinPts should be at least D+1, where D is the number of
dimensions in the dataset. The minimum MinPts value should be 3 or higher.

https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/

Clustering | FITPED AI

299

The algorithm starts with an arbitrary point and checks if it has enough neighbours
within ε. If it does, a new cluster is created, and the process continues with the
neighbours. Points that do not meet the density requirement are considered noise.

DBSCAN is best used when clusters have irregular shapes or varying densities. It is
especially useful when you have data with noise or outliers, such as geographical
data points, where some regions are densely populated, and others are sparse.

We will generate dataset with noise values (https://scikit-
learn.org/1.5/auto_examples/cluster/plot_dbscan.html):

from sklearn.datasets import make_blobs

from sklearn.preprocessing import StandardScaler

centers = [[1, 1], [-1, -1], [1, -1]]

X, labels_true = make_blobs(

 n_samples=750, centers=centers, cluster_std=0.4,

random_state=0

)

X = StandardScaler().fit_transform(X)

import matplotlib.pyplot as plt

plt.scatter(X[:, 0], X[:, 1])

plt.show()

Program output:

https://scikit-learn.org/1.5/auto_examples/cluster/plot_dbscan.html
https://scikit-learn.org/1.5/auto_examples/cluster/plot_dbscan.html

Clustering | FITPED AI

300

In DBSCAN, the labels_ attribute stores the cluster labels assigned to each data point.
Each data point is assigned a specific label indicating which cluster it belongs to.

• Points that are part of a cluster are assigned a unique label (e.g., 0, 1, 2, etc.).
• Points that do not belong to any cluster, often due to being too far from other

points (i.e., outliers), are given the label -1.

The labels_ attribute allows you to see which points belong to clusters and which are
considered noise or outliers.

import numpy as np

from sklearn import metrics

from sklearn.cluster import DBSCAN

Apply DBSCAN algorithm

db = DBSCAN(eps=0.3, min_samples=10).fit(X)

Access the labels assigned to each data point

labels = db.labels_

Number of clusters (excluding noise labeled as -1)

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

Number of noise points (those labeled as -1)

n_noise_ = list(labels).count(-1)

Print the estimated number of clusters and noise points

print("Estimated number of clusters: %d" % n_clusters_)

print("Estimated number of noise points: %d" % n_noise_)

Program output:
Estimated number of clusters: 3

Estimated number of noise points: 18

print(f"Homogeneity: {metrics.homogeneity_score(labels_true,

labels):.3f}")

print(f"Completeness: {metrics.completeness_score(labels_true,

labels):.3f}")

print(f"V-measure: {metrics.v_measure_score(labels_true,

labels):.3f}")

Clustering | FITPED AI

301

print(f"Adjusted Rand Index:

{metrics.adjusted_rand_score(labels_true, labels):.3f}")

print(

 "Adjusted Mutual Information:"

 f" {metrics.adjusted_mutual_info_score(labels_true,

labels):.3f}"

)

print(f"Silhouette Coefficient: {metrics.silhouette_score(X,

labels):.3f}")

Program output:
Homogeneity: 0.953

Completeness: 0.883

V-measure: 0.917

Adjusted Rand Index: 0.952

Adjusted Mutual Information: 0.916

Silhouette Coefficient: 0.626

The data points are classified into three categories: core samples, non-core samples,
and noise points. These categories help determine the structure of clusters. Here's
an explanation of each type:

• Core samples are considered to be part of a dense region in the dataset. The
algorithm expands clusters from these core points by including neighbouring
points that meet the density criteria.

• Non-core samples are assigned to the cluster of the core sample that is
nearest to them.

• Noise points is a data point that does not belong to any cluster. This is
identified by DBSCAN if the point does not have enough neighbouring points
and are labeled as -1 in the DBSCAN algorithm.

In the following visualization core samples are shown as large colored dots
representing the cluster they belong to. Non-core samples are shown as small
colored dots, also color-coded according to their assigned cluster. Noise points are
shown as black dots, as they are not part of any cluster.

unique_labels = set(labels)

core_samples_mask = np.zeros_like(labels, dtype=bool)

core_samples_mask[db.core_sample_indices_] = True

colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1,

len(unique_labels))]

for k, col in zip(unique_labels, colors):

Clustering | FITPED AI

302

 if k == -1:

 # Black used for noise.

 col = [0, 0, 0, 1]

 class_member_mask = labels == k

 xy = X[class_member_mask & core_samples_mask]

 plt.plot(

 xy[:, 0],

 xy[:, 1],

 "o",

 markerfacecolor=tuple(col),

 markeredgecolor="k",

 markersize=14,

)

 xy = X[class_member_mask & ~core_samples_mask]

 plt.plot(

 xy[:, 0],

 xy[:, 1],

 "o",

 markerfacecolor=tuple(col),

 markeredgecolor="k",

 markersize=6,

)

plt.title(f"Estimated number of clusters: {n_clusters_}")

plt.show()

Program output:

Clustering | FITPED AI

303

📝 9.4.7

What is DBSCAN primarily used for?

• Clustering in datasets with noise and outliers.
• Finding spherical clusters.
• Dividing data into equal-sized clusters.
• Defining the number of clusters in advance.

🕮 9.4.8

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic model for clustering that assumes
the data points are generated from a mixture of several Gaussian distributions. GMM
provides a more flexible approach than K-means by considering the covariance of
data points within each cluster. It is widely used in image processing, speech
recognition, and anomaly detection.

GMM uses the expectation-maximization (EM) algorithm to estimate the parameters
of the Gaussian distributions (mean, covariance, and weight). In the E-step, the
probability that each point belongs to each cluster is computed, and in the M-step,
the parameters of the Gaussians are updated based on the probabilities from the E-
step.

Algorithm:

1. Expectation (E-step) calculate the probability of each data point belonging to
each Gaussian distribution.

2. Maximization (M-step) update the parameters (mean, covariance, and
weight) of each Gaussian distribution based on the current probabilities.

3. Iterate repeat the E-step and M-step until convergence.

GMM is useful when the clusters have different shapes and sizes and when you want
a probabilistic interpretation of the clustering. It is ideal for problems where the data
can be modeled by a mixture of normal distributions, such as in speech or image
recognition.

Clustering | FITPED AI

304

📝 9.4.9

Which of the following is true for Gaussian mixture models?

• They estimate the parameters of multiple Gaussian distributions.
• They assume clusters are spherical.
• They only work with flat data structures.
• They always produce hard clustering.

Resources

Chapter 10

Resources | FITPED AI

306

10.1 Bibliography

🕮 10.1.1

Literature

• Dan Roth: Applied Machine Learning (CIS 519/419) -
https://www.seas.upenn.edu/~cis5190/fall2020/assets/lectures/lecture-
1/Lecture1-intro.pptx

• Emily Fox, Carlos Guestrin: Machine Learning Specialization, University of
Washington https://www.coursera.org/specializations/machine-learning

• Eric Eaton: Introduction to Machine Learning (CIS 419/519) -
https://www.seas.upenn.edu/~cis5190/fall2017/lectures/01_introduction.p
df

• Harikrishnan N B: Confusion Matrix, Accuracy, Precision, Recall, F1 Score -
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-
recall-f1-score-ade299cf63cd

• https://corporatefinanceinstitute.com/resources/data-science/regression-
analysis/

• https://edu.ukf.sk/course/view.php?id=5334
• https://medium.com/@novus_afk/understanding-logistic-regression-a-

beginners-guide-73f148866910
• https://medium.com/@satyarepala/understanding-logistic-regression-a-

step-by-step-explanation-9a404344964b
• https://medium.com/analytics-vidhya/a-comprehensive-guide-to-logistic-

regression-e0cf04fe738c
• https://medium.com/analytics-vidhya/understanding-logistic-regression-

b3c672deac04
• https://medium.com/analytics-vidhya/understanding-the-linear-regression-

808c1f6941c0
• https://medium.com/data-science-group-iitr/logistic-regression-simplified-

9b4efe801389
• https://scikit-learn.org/1.5/auto_examples/cluster/plot_dbscan.html
• https://utsavdesai26.medium.com/linear-regression-made-simple-a-step-by-

step-tutorial-fb8e737ea2d9
• https://www.analyticsvidhya.com/blog/2021/08/conceptual-understanding-

of-logistic-regression-for-data-science-beginners/
• https://www.cuemath.com/data/least-squares/
• https://www.datacamp.com/tutorial/understanding-logistic-regression-

python
• https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-

clustering/
• https://www.geeksforgeeks.org/hierarchical-clustering/
• https://www.geeksforgeeks.org/k-means-clustering-introduction/
• https://www.kaggle.com/code/prashant111/logistic-regression-classifier-

tutorial
• https://www.scribbr.com/statistics/simple-linear-regression/

https://www.seas.upenn.edu/~cis5190/fall2020/assets/lectures/lecture-1/Lecture1-intro.pptx
https://www.seas.upenn.edu/~cis5190/fall2020/assets/lectures/lecture-1/Lecture1-intro.pptx
https://www.coursera.org/specializations/machine-learning
https://www.seas.upenn.edu/~cis5190/fall2017/lectures/01_introduction.pdf
https://www.seas.upenn.edu/~cis5190/fall2017/lectures/01_introduction.pdf
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
https://corporatefinanceinstitute.com/resources/data-science/regression-analysis/
https://corporatefinanceinstitute.com/resources/data-science/regression-analysis/
https://edu.ukf.sk/course/view.php?id=5334
https://medium.com/@novus_afk/understanding-logistic-regression-a-beginners-guide-73f148866910
https://medium.com/@novus_afk/understanding-logistic-regression-a-beginners-guide-73f148866910
https://medium.com/@satyarepala/understanding-logistic-regression-a-step-by-step-explanation-9a404344964b
https://medium.com/@satyarepala/understanding-logistic-regression-a-step-by-step-explanation-9a404344964b
https://medium.com/analytics-vidhya/a-comprehensive-guide-to-logistic-regression-e0cf04fe738c
https://medium.com/analytics-vidhya/a-comprehensive-guide-to-logistic-regression-e0cf04fe738c
https://medium.com/analytics-vidhya/understanding-logistic-regression-b3c672deac04
https://medium.com/analytics-vidhya/understanding-logistic-regression-b3c672deac04
https://medium.com/analytics-vidhya/understanding-the-linear-regression-808c1f6941c0
https://medium.com/analytics-vidhya/understanding-the-linear-regression-808c1f6941c0
https://medium.com/data-science-group-iitr/logistic-regression-simplified-9b4efe801389
https://medium.com/data-science-group-iitr/logistic-regression-simplified-9b4efe801389
https://scikit-learn.org/1.5/auto_examples/cluster/plot_dbscan.html
https://utsavdesai26.medium.com/linear-regression-made-simple-a-step-by-step-tutorial-fb8e737ea2d9
https://utsavdesai26.medium.com/linear-regression-made-simple-a-step-by-step-tutorial-fb8e737ea2d9
https://www.analyticsvidhya.com/blog/2021/08/conceptual-understanding-of-logistic-regression-for-data-science-beginners/
https://www.analyticsvidhya.com/blog/2021/08/conceptual-understanding-of-logistic-regression-for-data-science-beginners/
https://www.cuemath.com/data/least-squares/
https://www.datacamp.com/tutorial/understanding-logistic-regression-python
https://www.datacamp.com/tutorial/understanding-logistic-regression-python
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/hierarchical-clustering/
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.kaggle.com/code/prashant111/logistic-regression-classifier-tutorial
https://www.kaggle.com/code/prashant111/logistic-regression-classifier-tutorial
https://www.scribbr.com/statistics/simple-linear-regression/

Resources | FITPED AI

307

• J. Skalka and M. Valko, "Rapid Guessing Behavior Detection in Microlearning:
Insights Into Student Performance, Engagement, and Response Accuracy," in
IEEE Access, vol. 12, pp. 157996-158024, 2024,
https://doi.org/10.1109/ACCESS.2024.3485505

• Pavol Návrat et al: Artificial Intelligence. STU in Bratislava, 2002, Bratislava,
393 pages, ISBN 80-227-1645-6.

• Rotem Dror: Evaluation -
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-
3/03-eval.pptx

• S. Tahsildar - Gini Index For Decision Trees -
https://blog.quantinsti.com/gini-index/

• Sruthi E R: Understanding Random Forest -
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-
forest/

• StatQuest: Decision and Classification Trees, Clearly Explained!! -
https://www.youtube.com/watch?v=_L39rN6gz7Y

• StatQuest: Random Forests Part 1 - Building, Using and Evaluating -
https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

• StatQuest: Random Forests Part 2 - Missing data and clustering -
https://www.youtube.com/watch?v=sQ870aTKqiM

🕮 10.1.2

Statement regarding the use of Artificial Intelligence in content creation

This content has been developed with the assistance of artificial intelligence tools,
specifically ChatGPT, Gemini, and Notebook LM. These AI technologies were utilized
to enhance the text by providing suggestions for rephrasing, improving clarity, and
ensuring coherence throughout the material. The integration of these AI tools has
enabled a more efficient content creation process while maintaining high standards
of quality and accuracy.

The use of AI in this context adheres to all relevant guidelines and ethical
considerations associated with the deployment of such technologies. We
acknowledge the importance of transparency in the content creation process and
aim to provide a clear understanding of how artificial intelligence has contributed to
the final product.

https://doi.org/10.1109/ACCESS.2024.3485505
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-3/03-eval.pptx
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-3/03-eval.pptx
https://blog.quantinsti.com/gini-index/
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://www.youtube.com/watch?v=_L39rN6gz7Y
https://www.youtube.com/watch?v=J4Wdy0Wc_xQ
https://www.youtube.com/watch?v=sQ870aTKqiM

Resources | FITPED AI

308

