

JAVA - Fundamental

2020

This document has been elaborated for the project FITPED (https://www.fitped.eu)

Work-Based Learning in Future

IT Professionals Education

(Grant. no. 2018-1-SK01-KA203-046382)

This project has been funded with support from the European Commission under the

ERASMUS+ Programme 2018, KA2, project number: 2018-1-SK01-KA203-046382.

Content
The Java Language .. 6

1.1 Programming languages .. 7

1.2 Java ... 11

Output Commands .. 16

2.1 Outputs ... 17

2.2 Outputs (programs) ... 22

Variables ... 24

3.1 Variables ... 25

3.2 Variables operations ... 31

Loading the Values .. 34

4.1 Inputs .. 35

4.2 Inputs (programs) .. 40

Conditions ... 44

5.1 Command if ... 45

5.2 Comparison ... 49

5.3 If (programs) ... 54

Loops .. 57

6.1 Basic commands .. 58

6.2 More about Loops ... 62

6.3 For cycle (programs).. 65

6.4 Loops with conditions ... 69

6.5 While loops (programs) ... 73

Numeric Data Types .. 75

7.1 Integer ... 76

7.2 Incremental and decremental operator .. 78

7.3 Number types.. 82

7.4 Real numbers .. 85

7.5 Number types (programs I.) .. 89

7.6 Number types (programs II.) ... 94

Other Data Types .. 97

8.1 Logical type and logical expression ... 98

8.2 Compound conditions ... 102

8.3 Char ... 107

8.4 Other data types (programs) ... 110

String I. .. 113

9.1 About String .. 114

9.2 Data type selection ... 120

9.3 Functions to work with string .. 122

9.4 Basic strings (programs) .. 127

9.5 String and number .. 129

String II. ... 132

10.1 Working with strings ... 133

10.2 More functions .. 138

10.3 Numbers in strings (programs) .. 142

10.4 Working with text (programs) ... 144

10.5 Advanced operations with text (programs) ... 148

Nested Loops and Effectivity... 151

11.1 Nested loops ... 152

11.2 Simple problems (programs) ... 155

11.3 Advanced problems (programs) .. 159

11.4 Repair programs (programs) ... 161

Multiple Conditionals .. 170

12.1 Command switch ... 171

12.2 Switch (programs) ... 177

Exceptions ... 182

13.1 Exceptions and the treatment ... 183

13.2 Exceptions (programs) .. 189

Arrays .. 192

14.1 Basic terms .. 193

14.2 Reading data into array ... 197

14.3 Constants and random numbers ... 201

14.4 Random numbers (programs) ... 205

14.5 Simple arrays (programs) .. 205

14.6 Fieldless List (programs) .. 209

Array Processing ... 211

15.1 Field operations .. 212

15.2 Arrays operations (programs) ... 220

15.3 Fields under scrutiny (programs) .. 226

15.4 Array sort (programs) .. 229

2D Arrays .. 232

16.1 Matrix .. 233

16.2 Working with matrix ... 239

16.3 Matrix (programs) ... 247

16.4 Table (programs) ... 251

Files ... 255

17.1 Streams ... 256

17.2 Text File ... 260

17.3 Working with files ... 268

17.4 Files processing (programs) ... 275

Exercises ... 282

18.1 Advanced exercises (programs)... 283

18.2 List of tasks .. 292

The Java Language

Chapter 1

The Java Language| FITPED

7

1.1 Programming languages

🕮 1.1.1

When writing an algorithm, we can also use the common language, but we encounter

several problems:

 the common language has about 110 thousand words in the case of Slovak, and in

the case of English even about 800 thousand words, which is very much for the

interpretation of commands

 the speech is commonly used in various phrases (broad lace), homonymous (head -

cabbage, screws, human, head as a leader, etc.), synonyms etc. the computer can

not understand

 it is also natural to get new ones and to eject old words

For that reason, when creating an algorithmic language, many of the common speech is

deleted, and only commands that are meaningful for a given situation or given use (eg write,

read, add, subtract, etc.)

📝 1.1.2

Is it true? We can use the common language used for communication between people as an

algorithmic language for non-thinking device (computer).

 True

 False

🕮 1.1.3

Commands that are intended for a non-thinking device (computer) are performed by a

processor. At present, only a few types of processors (used in a number of different devices)

are produced, but each has its own language to translate algorithm commands. We

designate this language as a machine code, and it is very far from the usual algorithmic

language command. We call it a lower level language.

The Java Language| FITPED

8

It can only perform duplicate data from / to the memory location, add the value from the

memory location to the processed content, and so on. All commands are additionally

represented by numbers.

Rewriting our commands into this form would be very lengthy, impractical and, in many,

mentally, too demanding.

📝 1.1.4

How is the native language of the processor called? It is the language in which every

command that is intended to be made by a foolish device must be translated.

The Java Language| FITPED

9

🕮 1.1.5

A compromise between the comprehensibility of the common language and the speed of

the machine language is the higher programming languages. The programming

language is a selection of common language (algorithmic) commands that are used in the

exact prescribed form,

print(“Hello“) - writes Hello

or

input.nextInt() – returns next number from input

The programming language is a translator that, by following the set rules, can translate

these commands into a machine code that is already easy to process because it understands

it.

📝 1.1.6

The programming language is:

 the intermediate language between the human language and the machine code

 a language that is translated into a machine code executed by the processor using a

translator

 selection common language commands that are used in a specified form

 a language designed to accurately express the processor - processor language

 a lower-level language that is better understable by people than a computer

🕮 1.1.7

There are currently hundreds of programming languages, each of which has its own

translator. There are two ways to translate commands:

 Befrore running - after writing the program, but before it runs. Commands in the

programming language translate into a separate file (application, exe-file) and the

original source code is no longer needed. If there were any bugs in the program, they

had to be repaired before the transfer. This translator is referred to as a compiler.

The Java Language| FITPED

10

 Continuously - the commands are translated into the source code sequentially during

the execution of the program. In order for this program to run, both the program and

the translator must be available in the system. The program can also run if there are

any errors - if the translator encounters them, they notify them to the user. We

designate such an interpreter as an interpreter.

The best-known compiled languages are C, Pascal, C #.

The most well-known languages Java, Python, PHP, JavaScript.

📝 1.1.8

What claims are true?

 Compiler is a translator that translates the program only once to create a bootable

application.

 An interpreter is a translator that only translates the program once and produces an

executable application.

 An interpreter is a translator that translates the program every time a command is

executed after a command.

 The compiler is a translator that translates the program every time a command is

executed after a command.

🕮 1.1.9

The advantage of compiled programs is the speed - the program is once and permanently

translated into machine code, and after execution, it only executes commands in the native

language of the processor.

The advantage of interpreted languages is the security. While the compiled program will

always be the same after interpreting, interpreters are constantly updated - if a feature later

found to be disruptive to the security of the device may be repaired, replaced, or simply

blocked in the new version of the interpreter. The new version of the interpreter is usually

updated automatically on the computer to prevent security risks.

The Java Language| FITPED

11

📝 1.1.10

What claims are true?

 A program written in a compiled language runs faster than the same program written

in the interpreted language.

 A program written in a interpreted language runs faster than the same program

written in the interpreted language.

 The advantage of interpreted languages is the security achieved for the same code

by updating the translators they need to perform.

 The advantage of compiled languages is the security achieved for the same code by

automatic compilation when an error is detected (e.g., in an operating system).

1.2 Java

🕮 1.2.1

Java is a high-level programming language created by Sun Microsystems company in the the

year 1995 (later it was bought by Oracle). Nowadays it is licensed with the GNU/GPL licence

and can be used to develop any type of application.

It is a fast, secure and reliable programming language that is currently implemented in

several billion different devices. Java applications are developed for mobile devices, web

servers, personal computers or notebooks, game consoles and many other devices.

Application can be created using the following:

 text editor for writing the code

 compiler to check and generate the intermediate code that can be understood by

the interpreter

 interpreter that ensures the implementation of the code

All three parts are usually part of the development environment and are interconnected.

The most common development environments are NetBeans, Eclipse, IntelliJ IDEA and BlueJ.

The Java Language| FITPED

12

We do not need a development environment to run the compiled code but a Java Runtime

Environment JRE (Java Runtime Environment) is needed that is available for all systems

and devices.

📝 1.2.2

The Java programming language is deployed in more than a billion different devices.

 True

 False

🕮 1.2.3

Java is object-oriented programming language. That means that every program behaves as

a separate closed object that can do the commands which we teach it (code). All of the

object-oriented languages are needed to follow certain rules and it is not enough to write

the commands just so.

The way of working and the rules for implementing the code are described by classes (class).

Each class has to have its name and commands that are to run first and have to be listed in

the part (method) that is called main.

Example:

class Dog { // definition that of the class

called Dog

 public static void main(String[] args) { // description of the main

method has usually this form

 System.out.println("Wof, Wof!"); // command that will write the

text in the quotes

 }

}

The individual parts of the code are enclosed in brackets {} and commands are separated by

a semicolon (;).

The Java Language| FITPED

13

📝 1.2.4

What is the keyword used to define a class?

🕮 1.2.5

We used "//" in the code and tried to explain the code behind them.

class Dog { // definition that of the class called Dog

 public static void main(String[] args) { // description of the main

method has usually this form

 System.out.println("Wof, Wof!"); // command that will write the text in

the quotes

 }

}

The characters that are placed after "//" are till the end of the row ignored when running

the code and are used as comments that can help to describe the code to another

programmer or the author when he/she later returns to the code.

📝 1.2.6

Fill in the text in the code that makes a line comment from the part to the right of the

embedded answer.

class Cat { _____ this is a class representing a cat

 public static void main(String[] args) {

 System.out.println("Miau, miau!");

 }

}

🕮 1.2.7

Simple comments are sometimes inadequate and you need to make sure that the code is

not executed (detailed comment, clear description, descriptive text about the program).

In this case, the pair of "/*" and the end "*/" are used as the beginning of the comment.

The Java Language| FITPED

14

/* demo example

Author: Jan Skalka

Date: 18.7.2019

Description: The programm writes the text Wof, wof! and it ends

*/

class Dog {

 public static void main(String[] args) {

 System.out.println("Wof, wof!");

 }

}

All text between these tags is ignored by the translator.

📝 1.2.8

Add text to the code that will create a text-based commentary between the text.

class Cat {

_____ this is a class representing a cat

 it will create code

 that will do the miau after execution _____

 public static void main(String[] args) {

 System.out.println("Miau, miau!");

 }

}

🕮 1.2.9

Characters {} limit the logical parts of the program.

class Dog {

 public static void main(String[] args) {

 System.out.println("Wof, wof!");

 }

}

In this case, they define the body of the class and the body of the main method.We will meet

with them in many places.

The Java Language| FITPED

15

📝 1.2.10

Add text to the code that borders the blocks defined in the program.

class Cat _____

 public static void main(String[] args) _____

 System.out.println("Miau, miau!");

Output Commands

 Chapter 2

Output Commands| FITPED

17

2.1 Outputs

🕮 2.1.1

The Dog programm contains only one command that executes a certain operation:

class Dog {

 public static void main(String[] args) {

 System.out.println("Wof, wof!");

 }

}

The command

System.out.println("text");

serves to write the text that is placed between the quotes. Although at first glance it looks

complicated, it only copies the structure of Java:

 System is a library/class containing the basic commands

 out is a channel intended to output the data from the programm

 println will ensure that the content listed in brackets is printed

The output command allows you to write virtually any text or number on the

console/screen.

📝 2.1.2

Complete the command to output the text:

class Cat {

 public static void main(String[] args) {

 System.out._____("Miau!"); // output Miau!

 }

}

Output Commands| FITPED

18

🕮 2.1.3

If we want, we can also use more of the same commands in a row. It is used to write each

command to a new line, but it is not an obligation. In order for the system to determine

where one command ends and the other begins is used a semicolon (;).

class Dog {

 public static void main(String[] args) {

 System.out.println("Wof!"); // outputs Wof!

 System.out.println("Grrr!"); // outputs Grrr!

 }

}

If the translator does not find the semicolon in the right place, the program can not be

started.

Remember: Commands are separated by a semicolon.

📝 2.1.4

Fill in the commands to output the text:

class Cat {

 public static void main(String[] args) {

 System.out.println("Miau!")_____ // output Miau!

 System.out.println("Krrss!")_____ // output Krrss!

 }

}

🕮 2.1.5

The command

System.out.println("text");

prints the text in quotes and "insert a line feed" - ensures that the next text is placed in a

new line.

If we want to put the text into a row with multiple commands, we use the command

System.out.print("text");

Output Commands| FITPED

19

which writes the text in brackets and does not insert a line feed - the next text will continue

to the current line at the next character position.

Programm:

class OneRow{

 public static void main(String[] args) {

 System.out.print("Hello!"); // outputs Hello!

 System.out.print("I am a computer."); // outputs Hello!I am a computer.

 }

}

will write the text only in one row.

Required texts are written immediately behind each other - it does not leave a gap

between them.

📝 2.1.6

Complete the code that way to print out the following text:

10 + 5 = 15

15 + 6 = 21

class Calculation {

 public static void main(String[] args) {

 System.out._____("10 + ");

 System.out._____("5 ");

 System.out._____("= 15");

 System.out._____("15 + ");

 System.out._____("6 ");

 System.out.print("= 21");

 }

}

 out

 print

 out

 print

 print

 print

Output Commands| FITPED

20

 print

 println

 println

 println

 print

🕮 2.1.7

The following code:

class OneRow {

 public static void main(String[] args) {

 System.out.print("Hi,");

 System.out.print("I");

 System.out.print("am");

 System.out.print("John.");

 }

}

outputs the text:

Hi,IamJohn.

If we want to have gaps between the words, we need to put them in the quotes too - the

system does not understand the language or can not estimate our intentions. We can insert

a space at the beginning or at the end of the text in quotes - but usually the spaces are

placed at the end of the text.

The program:

class OneRow {

 public static void main(String[] args) {

 System.out.print("Hi, ");

 System.out.print("I");

 System.out.print(" am "); // we can put the space to the beginning, but

we usually do not

 System.out.print("John.");

 }

}

outputs the text:

Hi, I am John.

Output Commands| FITPED

21

with spaces on the expected places.

📝 2.1.8

Fill in the characters so it looks like the following:

Hello, I am not programmer.

Use the underdash instead of space - "_".

class OneRow {

 public static void main(String[] args) {

 System.out.print("Hel_____");

 System.out.print("I_____");

 System.out.print("a_____");

 System.out.print("not");

 System.out.print("_____rogrammer");

 }

}

🕮 2.1.9

If we compile the output using mutliple print commands, we can optionally combine the

print and println where we have to consider that the output after the println starts in a new

row.

The command

System.out.println();

without parameters moves the cursor to the new line.

The following program inserts a blank line between the two lines of text written with the

println command

class MoreRows {

 public static void main(String[] args) {

 System.out.println("Hello"); // writes the text and moves to a new line

 System.out.println(); // moves the cursor to another new line

 System.out.println("before this line is one line omitted"); // writes

the text and moves to a new line

 }

Output Commands| FITPED

22

}

and the result is following:

Hello

before this line is one line omitted

📝 2.1.10

Fill in the commands to get the following output:

WARNING!

Winter at the polar circle is...

... long

... and cold.

Insted of space use the underscore - "_".

class MoreRows {

 public static void main(String[] args) {

 System.out._____("W_____");

 System.out._____("W_____");

 System.out._____("at_the_polar_circle");

 System.out._____("_____...");

 System.out._____();

 System.out._____("...long");

 System.out._____();

 System.out._____("...and_cold.");

 }

}

2.2 Outputs (programs)

⌨ 2.2.1 Output of data

Print the following:

Joseph

Cucumber

Output Commands| FITPED

23

⌨ 2.2.2 Hello World!

Print on the screen "Hello World!".

Output:

Hello World!

⌨ 2.2.3 Greetings

Print the following: Hello, Good day, Hi

Output:

Hello

Good day

Hi

⌨ 2.2.4 Print in a row

Print out using the three commands System.out.print the following words:

"I "

"am "

"learning."

Make sure there are spaces between the words. You need to put them between the quotes.

Variables

 Chapter 3

Variables| FITPED

25

3.1 Variables

🕮 3.1.1

A command is used to write the text

System.out.print("mytext");

that is placed between the quotas and a command

System.out.println("mytext");

that will write the text and move the cursor to a new line.

The command print can be used not only to write text but also to do some calculation, for

example:

System.out.println(15+3);

this will do the calculation at first and then write the result.

The calculation is written without the quotes based on which the system knows that it

should work with the content of the brackets as with numbers and that we do not want to

write the content of the brackets in the same manner as it is.

The notation

System.out.println("15+3");

would result in the same result as the text in the quotas.

15+3

📝 3.1.2

What will be the output of the program?

class Riddle {

 public static void main(String[] args) {

 System.out.println(15+3+10);

 }

}

Variables| FITPED

26

🕮 3.1.3

The programming language is not limited to writing simple texts, but it can also make

calculations. In order to store intermediate results or input values, variables are used.

Variable is a memory location that serves to store and remmember the values. We can

change it during the program.

Each variable has:

 data type, which determines whether there is a text or number stored in it (for now

are these two types of values enough),

 title (name), according which we refer to the variable.

If we want to use the variable in the program, we have to state it in the code as follows.

class Variables {

 public static void main(String[] args) {

 int number;

 number = 10;

 }

}

In the first row, we define that we will use the variable number into which we will enter

integer values.

In the second row (number = 10), we assign the value 10 to this variable.

The command that determines that the variable is to be assigned a value is "=". The "="

character is an assignment character and we usually do not say that we put the value into

the variable, but we assign it to it.

Both steps can be fused to one and write as follows:

class Variables {

 public static void main(String[] args) {

 int number = 10;

 }

}

Variables| FITPED

27

📝 3.1.4

Fill in the code so that it is possible to assign the integer values to the variable num.

class Task {

 public static void main(String[] args) {

 _____ num;

 num = 1000;

 }

}

🕮 3.1.5

Variables are usually used in calculations (expressions).

class Sum {

 public static void main(String[] args) {

 int a = 10;

 int b;

 b = 20;

 sum = a + b;

 }

}

We assign the value or result of the calculation on the right side to the variable to the left

of the assignment symbol (=), so its value changes.

The variables listed to the right of the assignment symbol only give their value for the

calculation - their content does not change with this use.

So the result of calculation a + b, which is actually 10 + 20, is assigned into the variable sum.

First, the entire calculation is performed at the right of the "=" and the result is assigned into

the variable after its completion.

📝 3.1.6

What will the variable c contain after the last command of program?

Variables| FITPED

28

class Riddle {

 public static void main(String[] args) {

 int a = 74;

 int b = 33;

 c = a - b;

 }

}

🕮 3.1.7

We will write the content of the variable as well as the text or expression:

class Output {

 public static void main(String[] args) {

 int s = 20;

 System.out.println(s);

 }

}

it will write 20 that is the content of the variable s.

Just as we could calculate the value with the output, we can do it with variables:

class Output {

 public static void main(String[] args) {

 int a = 5, b = 10;

 System.out.println(a + b);

 }

}

Note the declaration of variables a and b in the first line of the program - such an entry is

allowed in the declaration.

In the output, the calculation is performed first - instead of the variables, the values they

contain are put in - and the result obtained is written.

📝 3.1.8

What will be the output of the following code?

Variables| FITPED

29

class Riddle {

 public static void main(String[] args) {

 int a = 3, b = 5;

 System.out.println(a + b - 4);

 }

}

🕮 3.1.9

The data type defines besides the type of values we can insert into variables also the

operations we can perform with them.

For numbers that are the operations of:

 addition (+)

 subtraction (-)

 multiplication (*)

 division (/)

If more than one operation is used in the calculation (commonly referred to as the

expression), the standard policy applies: multiplication and division take precedence over

addition and subtraction. If they are in brackets, the expression in them is evaluated first. If

they have the same priority, they move from left to right.

For example:

class Calculation {

 public static void main(String[] args) {

 int a = 5, b = 7, c = 3;

 int result1 = a + b * c;

 int result2 = (a + b) * c;

 int result3 = 2*(a + 5) - c;

 }

}

In the first case is calculated b * c that means 7 * 3 = 21 and after that is added 5 – the

result will be 26.

In the second case will be added a + b that means 5 + 7 = 12 and after that it will be

multiplied by 3 – the result will be 36.

Variables| FITPED

30

In the third case will be variables and numbers combined which is often used. Firstly is

calculated a + 5 that means 5 + 5 = 10, then it will by multiplied by two 2 * 10 = 20 and

subtracted by c that means 3. The result will be 17.

📝 3.1.10

What will be the output of the following code?

class Riddle {

 public static void main(String[] args) {

 int a = 3, b = 5, c = 2;

 System.out.println(a + b * c – 3 + 2 * a);

 }

}

🕮 3.1.11

The variable may have virtually any name, but we have to follow the following rules:

 the name of the variable must begin with a letter, or "_" (or $, but it is not used)

 other characters may be letters, numbers, or underscores

 no spaces, special characters may be used in the name (for example +, - ,*, =, etc.),

 the name of the variable must not be either commands or key words of the language

(for example class, for etc.)

Variable names are case-sensitive, meaning that Mom and mom are two different

variables because they differ in the size of the first character. Also ContentRectangle and

contentRectangle are different variables.

Variable names are currently used in the following convention - the first letter in the name

is small and if the name of the variable consists of several words, each additional word starts

with a capital letter.

For example:

contentRectangle, shortButLongVariable

Variables| FITPED

31

If we need to use more words in the name, such writing is easier to read and better to

decode the programmer.

📝 3.1.12

Which of the following can be used as the variable name:

 winter

 winter

 _father

 t__a

 _aa_

 IHAVE_It

 look-1

 woof-woof

 2_test

 c=

 c?11

 C8 c1

 for

3.2 Variables operations

📝 3.2.1

Evaluate which of the following statements contain the correct assignment of a variable:

 c = a * b

 _field = a / b

 a_b = c

 f = 4 + _b

 b + c = d – 4

 c = n _ c

 c d = 4 + a

Variables| FITPED

32

📝 3.2.2

What will be contained in the variable c after the expression is calculated:

c = 7 + 3 * (8 - 2 +(6 * 9)) + 21 / 3

📝 3.2.3

What will be contained in the variable c after the calculation of the expression:

c = 6 * a + b - 7 * 11 + (6-b) + a * 3, where a = 3, b = 5

📝 3.2.4

What will be contained in the variable c after the calculation of the expression:

c = b * a + 6 - (a * 3) + a * (b - 7), where a = 2, b = 4

⌨ 3.2.5 Calculation - numbers

Write a code that will write the result of the following math equation 5 + 48 + 3 * 11 - 96

using the print command.

⌨ 3.2.6 Calculation - variables

Write a code that will:

 declare the variable a

 assign the variable a the value 10

 declare the variable b

 assign the variable b the value 17

 print the sum of these two variables

Variables| FITPED

33

⌨ 3.2.7 Calculation - into a variable

Write a code where you will:

 declare the variable a and assign the value 5

 declare the variable b and assign the value 4

 declare the variable product and calculate the product of variables a and b

 print the variable product.

Loading the Values

 Chapter 4

Loading the Values| FITPED

35

4.1 Inputs

🕮 4.1.1

From programs, we usually expect to be able to solve the problem for different values.

If we have a program that can only sum values of 230 and 180, instead of writing, it is enough

to use a calculator or just the knowledge of elementary school.

The purpose of the program is to be able to perform the same operation or sequence of

arbitrary operations. These must somehow get into the program so we do not have to write

them directly into the code. We designate them as input values and need to get them from

the user and store them in variables to work with them.

Operations that ensure that values are retrieved are referred to as input

operations. Initially, you enter the required values from the keyboard and read them

through the program.

📝 4.1.2

What are the operations that ensure that user values are loaded into the program?

 input

 output

 ongoing

🕮 4.1.3

Several tools are available for Java to read the input data from users. Most often,

a Scanner is used that can read the input values separated by a space or placed in separate

rows.

To use the Scanner we need to do the following:

 import the library java.util.Scanner

 create a new scanner for standardized input channel (is marked as System.in)

Loading the Values| FITPED

36

Although the order of these commands looks complex, we usually write it in the same form,

and it is enough for us to learn to remember it.

After creating the scanner, we can use it to load integer values into integer variables using

the nextInt() command.

import java.util.Scanner; // import of scanner

public class Application {

 public static void main(String[] args) {

 // creation of the scanner with the name input over a standard input

channel

 Scanner input = new Scanner(System.in);

 int a; // declaration of variable a

 // using the created scanner with the name input we can read the number

value and assign it to the variable a

 a = input.nextInt();

 // we can write out the read variable

 System.out.println(a);

 }

}

📝 4.1.4

Fill in the source code the commands so that it is possible to read the data from the input

_____ java.util.Scanner;

public class Application {

 public static void main(String[] args) {

 // creation of scanner with the name input over the standardized input

channel

 Scanner input = new Scanner(System._____);

 ... // reading the data

 }

}

📝 4.1.5

Fill in the source code commands so that it is possible to read the input data:

Loading the Values| FITPED

37

_____ java.util._____;

public class Application {

 public static void main(String[] args) {

 // creation of scanner with the name input over the standardized input

channel

 _____ input = new _____(_____._____);

 ... // reading the data

 }

}

 Scanner

 in

 System

 System

 Scanner

 Scanner

 import

📝 4.1.6

Fill in the source code the commands so that it will print the twice of the read value:

_____ java.util._____;

public class Application {

 public static void main(String[] args) {

 // creation of scanner with the name input over the standardized input

channel

 _____ input = new _____(System._____);

 // declaration of integer variable

 _____ a;

 a = vstup._____(); // reading the integer value from the input

 System.out.println(a_____)_____// writing the two times of the read

value

 }

}

 *2

 in

 Scanner

 :

 ;

 .

 int

 nextInt

Loading the Values| FITPED

38

 Scanner

 import

 Scanner

🕮 4.1.7

Usually, one value is not enough in the program so we need more.

Using the Scanner we can read any number of inputs. One integer value can be assigned to

an integer variable using the command

input.nextInt();

where the input is the Scanner.

If we want to load more values, we can use the command more times. User-entered values

are assigned into variables in the order they are entered at the input.

The following program will read two values and print their sum:

import java.util.Scanner;

public class Application {

 public static void main(String[] args) {

 // creation of scanner with the name input over the standardized input

channel

 Scanner input = new Scanner(System.in);

 int a, b; // declaration of integer variables a, b

 // using the created scanner with the name input we can read the input

integer value and assign it to the variable a

 a = input.nextInt();

 // using the same scanner we read anothe integer value and assign it to

the variable b

 b = input.nextInt();

 // we print the sum of the values

 System.out.println(a+b);

 }

}

The input values can be put in one row delimited by a space (after the last one you have to

press Enter)

Loading the Values| FITPED

39

or we can press Enter after each value

📝 4.1.8

Fill in the commands so that the program will read the two input values into

variables a and b and print out their product:

import java.util._____;

public class Application {

 public static void main(String[] args) {

 Scanner input = new Scanner(_____);

 _____ a,b; // declaration of two integer variables a, b

 a = input._____;

 b = _____nextInt();

 System.out.println(a_____); // we will print the product of values

 }

}

 Scanner

 System.in

 nextInt()

 next()

 *b

 Scanner

 *a

 input.

 int

 System.out

Loading the Values| FITPED

40

📝 4.1.9

Arrange the program rows to load the two integer values a and b, calculate the difference

in the variable c and list it.

 }

 Scanner input = new Scanner(System.in);

 int c = a - b;

 System.out.println(c);

 public class Application {

 import java.util.Scanner;

 b = input.nextInt();

 a = input.nextInt();

 }

 int a, b;

 public static void main(String[] args) {

4.2 Inputs (programs)

⌨ 4.2.1 Loading the values

Read the given integer value, multiply it by 2 and print.

For example:

input : 3

output: 6

input : 5

output: 10

JavaApp.java

import java.util.Scanner;

public class JavaApp {

Loading the Values| FITPED

41

 public static void main(String[] args) {

 // we create scanner to read the input values

 Scanner input = new Scanner(System.in);

 // input - read the values

 // output - print in the required form

 }

}

⌨ 4.2.2 Area of a square

Write a code that will for the given integer value calculate the area of a square.

input : 3

output: 9

input : 8

output: 64

⌨ 4.2.3 Family allowances

Write a code that will for the given number of children calculate and print the sum of family

allowances if for one child you get 30 EUR.

input : 3

output: 90

input : 8

output: 240

⌨ 4.2.4 Cubic value

Write a code that will return the cubic value of the given integer value.

Loading the Values| FITPED

42

input : 3

output: 27

input : 8

output: 512

⌨ 4.2.5 The sum of two numbers

Calculate and print the sum of two integer numbers from the input that are in one row and

divided by a space.

input : 5 7

output: 12

input : -1 5

output: 4

⌨ 4.2.6 The product of two numbers

Calculate and print the product of two input integer numbers that are given in one row

delimited by a space.

input : 5 7

output: 35

input : 1 5

output: 5

⌨ 4.2.7 The area and perimeter of a rectangle

The two given integer values (entered at one line input and separated by space) represent

the sides of the rectangle. Calculate the area and perimeter of the rectangle. Write the result

in the following form: area space perimeter.

input : 1 2

Loading the Values| FITPED

43

output: 2 6

input : 30 5

output: 150 70

⌨ 4.2.8 The surface area and volume of the block

Calculate the surface area and volume of the block (where the sides are on the input in one

row separated by spaces). Print the result in the following form: surface area space volume.

input : 2 2 2

output: 24 8

input : 3 2 4

output: 52 24

⌨ 4.2.9 Aircraft range

Write a code that will return the range of the aircraft from given velocity (km per hour) and

flight time in hours. The input contains the velocity and flight time. Print the calculated flight

length in km.

input : 987 5

output: 4935

input : 230 4

output: 920

Conditions

 Chapter 5

Conditions| FITPED

45

5.1 Command if

🕮 5.1.1

A sequence of commands that is executed in the order in which it is written in the program

is referred to as a sequence.

In this case, the non-minded device proceeds the individual orders, and when the command

executes, proceeds to the next.

All the programs we have met so far have worked in the same way, for example:

import java.util.Scanner;

class Calculation {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a, b;

 a = input.nextInt();

 b = input.nextInt();

 int result1 = a + b;

 int result2 = 2 * (a + b);

 System.out.println(result1);

 System.out.println(result2);

 }

}

📝 5.1.2

What is the sequence of commands that are executed in the order they are entered?

🕮 5.1.3

However, most programs do not only contain simple sequences, but very often they need

to decide how to proceed on the basis of the data processed. For example, the program will

behave differently when entering staff age for a person under 18, over 18 or over 70 years.

The ability to decide and execute other commands by meeting or failing a condition is

referred to as branching. It consists of a condition and orders to be executed if the

condition is met and not met.

Conditions| FITPED

46

A conditional statement allows us to, for example, inform the user that he entered incorrect

values, find out which number is bigger and so on.

📝 5.1.4

How do you name the sequence of commands used to make the execution of the order

conditional upon fulfillment of the condition, or can we ensure that one order is executed

when the condition is met and otherwise not executed?

 sequence

 branching

 loop

🕮 5.1.5

The condition statements (or statement of branchment) has the following form:

if (condition)

 statement1;

else

 statement2;

The condition is always written in brackets.

If the program encounters a condition while executing the commands, it evaluates its truth

and chooses which commands it will execute, depending on the result.

If the condition is fulfilled, the command1 is executed, and if not, the command2 is

executed. The part that is being executed when the condition is met is called the positive

branch and the part that is executed if the condition is not met - the negative branch. A

negative branch is given after the else statement.

After the execution of the commands in the condition, it continues sequentially by executing

additional commands.

Conditions| FITPED

47

📝 5.1.6

How are named the parts of conditional command that contain commands that are executed

when a condition is met or not?

 branches

 conditions

 command brackets

🕮 5.1.7

A typical example of using a condition is to compare two numbers. In the task of writing a

larger number, we compare the values stored in the variables and output the larger one.

class Example {

 public static void main(String[] args) {

 int a = 10, b = 15;

 if (a > b)

 System.out.println(a);

 else

 System.out.println(b);

 }

}

The condition contains a comparison of two values by the larger one (a > b).

If the condition is met (a is greater than b), the positive branch statement is executed - the

value a is printed.

If the condition is not (a is not greater, but less than or equal to b), the statement specified

in the else branch is executed - the value of b is printed.

📝 5.1.8

Fill in the code to decide whether the number is "positive" or "negative".

import java.util.Scanner;

Conditions| FITPED

48

class Calculation {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input.nextInt();

 if _____a > 0_____

 System.out.println("positive");

 System.out.println("negative");

 }

}

🕮 5.1.9

Using one command in the positive and one in the negative branch is rather exceptional, we

usually need to use more commands. At that time, we write a list of commands between {}

in the form of:

if (condition) {

 statement1;

 statement2;

} else {

 statement3;

 statement4;

}

For example:

class Age {

 public static void main(String[] args) {

 int age = 16;

 if (age < 18) {

 System.out.println("The person is less than 18 years old");

 System.out.println(age + " year old cannot be employed");

 } else {

 System.out.println("The person is more than 18 years old");

 System.out.println(age + " year old can be employed");

 }

 }

}

📝 5.1.10

Fill in the missing code:

Conditions| FITPED

49

import java.util.Scanner;

class Example {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int price = input.nextInt();

 _____ (price < 20) _____

 System.out.println("Price of the purchase is " + price);

 System.out.println("The goods are cheap.");

 _____ else _____

 System.out.println("Price of the purchase is " + price);

 System.out.println("The goods are expensive.");

 }

}

5.2 Comparison

🕮 5.2.1

So far, we have only used a larger or smaller character in the condition. However, we can

also compare using other characters:

 == compares whether the values are equal, a == b

 <= compares whether the value on the left side is lower or equal than the value on

the right side, c <= 10

 >= compares whether the value on the left side is higher or equal than the value on

the right side, c >= 10

 != compares whether the values are not equal, a != b – condition is met if the values

are different

In the case of usage of symbols <= and >= has to be the order followed. The use of =< will

result in an error.

📝 5.2.2

Fill in the right comparison operators to the following code:

Conditions| FITPED

50

import java.util.Scanner;

class Example {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input.nextInt();

 if (a _____ 0) {

 System.out.println("A zero value was given.");

 } else {

 System.out.println("A non-zero value was given.");

 }

 }

}

🕮 5.2.3

A branch in which both the positive and negative commands are defined is referred to as

complete but often we may encounter a situation where orders are only listed if the

condition is met or not.

Such branching is referred to as incomplete but does not mean that it is inferior - very

often it is not necessary to execute some orders when the condition is not met.

In the case of incomplete branching (i.e. if no command is to be executed in case of non-

compliance), we simply omit the else branch.

📝 5.2.4

Is it possible to omit the else command with all of its branch?

 Yes

 No

📝 5.2.5

Fill in the right comparison operators to the following code:

Conditions| FITPED

51

import java.util.Scanner;

class Example {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input.nextInt();

 if (a _____ 0) System.out.println("zero value");

 if (a _____ 0) System.out.println("positive number");

 if (a _____ 0) System.out.println("negative number");

 }

}

 <

 >=

 >

 ==

 <=

📝 5.2.6

Fill in the code to find the division of two numbers, where if the second number is 0, will

inform the user about division by zero.

import java.util.Scanner;

class Division {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input.nextInt();

 int b = input.nextInt();

 if (_____)

 System.out.println("Division by zero")

 _____ { // otherwise calculate and print the division

 int divis = a _____ b;

 System.out.println(divis);

 }

}

🕮 5.2.7

Exchange of values between variables.

There are two numbers at the input that we load into variables a and b. Write a program to

ensure that when it ends, the values will be exchanged with each other.

Conditions| FITPED

52

If we want to exchange the values store in variables a and b, following statements:

int a = 10, b = 15;

a = b;

b = a;

would cause that the value of both variables would be 15.

How is this possible?

In code each operation has its place and order that is the reason why in the first step the

values are 10 and 15 but after the assignment

a = b;

is in both variables the value 15 is in bot variables the value 15 and we lost the content of

the variable a - it was overwritten by the content of variable b.

The value of variable a, where we want to save the new value, should be "saved" somewhere

else.

We use a third (auxiliary) variable.

The algorithm will be then following:

int a = 3, b = 5;

int pom;

pom = a;

a = b;

b = pom;

Conditions| FITPED

53

Conditions| FITPED

54

📝 5.2.8

What values will be saved in variable a and b after the following commands?

int a = 10, b = 5;

a = a + b;

b = a + b;

a = b – a;

 a = 5, b = 20

 a = 20, b = 5

 a = 0, b = 15

 a = 15, b = 0

 a = 20, b = 15

5.3 If (programs)

⌨ 5.3.1 Comparison of two numbers

Write a code that prints the larger number of the two given numbers. In the case of equal

numbers print "Numbers are the same".

Input : 3 2

Output: 3

Input : 2 8

Output: 8

Input : 2 2

Output: numbers are the same

⌨ 5.3.2 Absolute value of a number

Write a code that prints the absolute value for the given integer.

Input : 0

Output: 0

Conditions| FITPED

55

Input : 3

Output: 3

Input :-8

Output: 8

⌨ 5.3.3 Maximum of three numbers

Write the code that prints the largest of the three entered numbers. If all three numbers are

the same it prints "Numbers are the same".

Input : 2 4 6

Output: 6

Input : 2 2 2

Output: Numbers are the same

⌨ 5.3.4 Linear Equations

Write a code that will compute solution to a system of linear equations of two variables.The

input values are of the double type, (a1, b1, c1, a2, b2, c2) are the values of equations -

the values for which:

a1x + b1y = c1

a2x + b2y = c2

Print solutions of type double:

 if the system has no solution: 0

 if the system has one solution: three numbers: 1 and values of x and y

 if the system has an infinite number of solutions: Infinity

Conditions| FITPED

56

input : 1 1 1 1 1 2

output: 0

input : 2 3 6 4 9 15

output: 1 1.5 1.0

input : 1 1 1 1 1 1

output: Infinity

⌨ 5.3.5 Triangle type

Write a code that for three numbers will check what kind of a triangle they form (equilateral,

isosceles, right-angled). Input three numbers of double type. Print three boolean values

(false or true) that correspond to each kind of triangle. If the numbers do not define a

triangle then print -1.

input : 5 12 13

output: false false true

input : 5 5 5

output: true true false

input : 1 2 1

output: -1

input : 3 4 5

output: false false true

Loops

 Chapter 6

Loops| FITPED

58

6.1 Basic commands

🕮 6.1.1

Most of the time we need to repeat a part of the algorithm. The commands that make it

possible are named loops. With each repeat it is important to know what (body of loop)

needs to repeat and how many times (condition of loop) it needs to repeat.

Loops make it possible to repeat parts of code a given number of times or till the condition

is met, for example:

how many times: repeat 10 times

what: do a squat

how many times: till you have money on bank account

what: buy gifts

how many times: while you are not at the end of text

what: replace word "five" with "5"

📝 6.1.2

How is named the statement in code that allows you to repeat commands?

 loop

 condition

 complex command

🕮 6.1.3

We often know that when designing the program some actions are needed to repeat. Loop

execution is guarded by an integer control variable that is set at the start of loop to a specific

value. This value is changed in each iteration of the loop.

The loop is executed till the condition of the loop is met.

Loops| FITPED

59

int i; // declaration of the control variable

for(i = 1; i <= 10; i = i + 1) { // control part of loop

 command; // loop body, list of commands that are to be executed

}

Each part of the loop represent the following:

 for(…) – the loop command definition says its a loop with known count of iterations

 i – control variable

 i = 1 – set of the start value for the variable

 i <= 10 – condition for the loop; if the condition is met then the commands in loop

body will be executed; if its not met then the loop will terminate

 i = i + 1 – loop step, after executing the commands in the loop body, the value will

change each step based on this command: it will increase by 1

📝 6.1.4

Fill in the code so that it prints 5-times the text "Hello".

class Hello {

 public static void main(String[] args) {

 int i;

 _____(i = 1; i <= _____; i = i + 1) {

 System.out.println("Hello");

 }

 }

}

🕮 6.1.5

Variable i is used only inside the loop. It is enough to declare it in its head.

We save one line of code and the variable stops to exist after the termination of the loop.

It will not happen that we use it later in the code with not specified value.

for(int i = 1; i <= 10; i = i + 1) {

 command;

}

// variable i is no longer availible

Loops| FITPED

60

📝 6.1.6

Fill in the code so that the loop will be executed 10 times.

for(_____ i = 1; i _____ 10; i = i _____ 1) {

 System.out.println("Hello")_____

}

🕮 6.1.7

The loop condition can have different shape. The loop iteration 10 times can be written like

this:

for(int i = 1; i<= 10; i = i + 1) { ... }

as well as:

for(int i = 1; i < 11; i = i + 1) { ... }

Both of the notation will ensure that the loop will be executed last time when the

variable i will have the value 10.

📝 6.1.8

How many times will be executed the following loop?

for(int i = 1; i < 7; i = i + 1) { ... }

🕮 6.1.9

On the inside the loop works following:

for(int i = 1; i <= 5; i = i + 1) { ... }

1. initialization - the control variable is set with a value

2. it is verified that the loop condition is met - if yes, the commands of the loop are

executed; otherwise the loop terminates

3. the commands in the loop body are executed

Loops| FITPED

61

4. the loop step is executed - the value of control variable is changed and it continues

with step number 2.

The notation

for(int i = 1; i <= 1; i = i + 1) { ... }

will execute the loop just one time.

The notation

for(int i = 1; i <= 0; i = i + 1) { ... }

will execute the loop not even once.

📝 6.1.10

How many times will be executed the following loop?

for(int i = 0; i < 5; i = i + 1) { ... }

🕮 6.1.11

The loop condition can have different shape. The loop iteration 10 times can be written like

this:

for(int i = 1; i<= 10; i = i + 1) { ... }

as well as:

for(int i = 1; i < 11; i = i + 1) { ... }

Both of the notation will ensure that the loop will be executed last time when the

variable i will have the value 10.

Loops| FITPED

62

6.2 More about Loops

🕮 6.2.1

The loop is mainly used so that we use the control variable in the commands. The content

of the control variable will be outputed from 1 to 10.

for(int i = 1; i <= 10; i = i + 1) {

 System.out.println(i);

}

The command will write in order the values 1, 2, 3 ... 10.

📝 6.2.2

What will be the output after the loop ends?

for(int i = 1; i < 4; i = i + 1) {

 System.out.print(i);

}

📝 6.2.3

Fill in the code so that the values from 3 to 7 appear below each other:

for(_____ i = _____; i < _____; i = i + 1) {

 System.out._____(i);

}

🕮 6.2.4

Except the loop where the control variable is changed from lower value to higher value, we

can use a notation where the control variable is changed from higher value to lower value:

 by initialization is the starting value higher

 in the loop step is the value of i decreasing by 1: i = i – 1

for(int i = 10; i > 5; i = i - 1) {

 System.out.println(i);

}

Loops| FITPED

63

Similar rules are used as in the previous case:

 the control variable is set with an initialization value

 the loop condition is verified

 the looop body is executed

 the value of control variable is changed based on the rule (in this case i = i – 1)

📝 6.2.5

Fill in the code so that the result shall be 987654:

for(int i = _____; i > _____; i = i _____ 1) {

 System.out._____(i);

}

🕮 6.2.6

The loops with known count of iterations are used so, that after a few iterations they

terminate but sometimes occur situations when the loop does not terminate, for example:

for (int i = 10 ; i >= 5; i = i + 1) {

 System.out.println(i);

}

The control variable is set to the value 10 and in each step it is increased.

But the condition is set for i >= 5 and it is met for each next step.

The value of i increases to the infinite or to the maximum integer value.

📝 6.2.7

Make sure that the loop terminates:

for (int i = 10 ; i >= 5; i = i _____ 1) {

 System.out.println(i);

}

Loops| FITPED

64

📝 6.2.8

How many times will be the loop executed?

for (int i = 10 ; i >= 5; i = i - 1) {

 System.out.println(i);

}

🕮 6.2.9

Calculate the sum of the first 100 positive numbers.

Our task is to add the values 1 + 2 + 3 + 4 + 5 + 6 + 99 + 100.

The numbers will be added gradually - in a loop that will be repeated from 1 to 100 and add

each next value.

To save the temporary result we need space where the numbers will be added to - to a

variable.

Variable sum will be increased in each step by the value of the variable i.

 int sum = 0;

 // from 1 to 100 in each step is i increased by 1

 for(int i=1; i <= 100; i = i + 1) {

 sum = sum + i; // i is added

 }

 System.out.println(sum);

}

To show how the loop is executed and how the values of each varieble is changed, is used a

watch table, which contains values of each variable in each loop step.

Loops| FITPED

65

📝 6.2.10

Order the rows of the program that will find the sum of numbers between two values for

which a < b.

 int b = input.nextInt();

 int a = input.nextInt();

 sum = sum + i;

 public class Application {

 for(int i = a; i

 public static void main(String[] args) {

 int sum = 0;

 System.out.println(sum);

 }

 }

 Scanner input = new Scanner(System.in);

 import java.util.Scanner;

 }

6.3 For cycle (programs)

⌨ 6.3.1 Repeat print

Write an algorithm that prints "Hello" 10 times to console. Each word is in a separate line.

Loops| FITPED

66

Output:

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

⌨ 6.3.2 Numbered print

Write an algorithm that prints 10 times word Hello with number to the console - in the form

"1Hello" and in the next line "2Hello" ... "10Hello".

Output:

1Hello

2Hello

3Hello

4Hello

5Hello

6Hello

7Hello

8Hello

9Hello

10Hello

⌨ 6.3.3 The sum of n numbers

Write the code to get the sum of the first n integer numbers given at the input. Print the

intermediate results.

Input: 5

Output:

1

3

6

10

15

Loops| FITPED

67

Input: 4

Output:

1

3

6

10

⌨ 6.3.4 Factorial

Write a code that calculates the factorial for the given number n (n! = n. (n-1).3.2.1).

Print the intermediate results.

Input : 3

Output:

1

2

6

Input : 4

Output:

1

2

6

24

⌨ 6.3.5 The product of positive numbers without multiplication

Write an algorithm that calculates the product for two positive integers without using the

multiplication operation.

Input : 5 3

Output: 15

Input : 5 5

Output: 25

Loops| FITPED

68

Input : 2 5

Output: 10

⌨ 6.3.6 The product of numbers in the interval

Write a code that calculates the product of all integers between the two given values. Ensure

that the program displays the values of the variables in each cycle step during the run.

Input : 5 7

Output:

1 - 5

2 - 30

3 - 210

210

Input : 2 5

Output:

1 - 2

2 - 6

3 - 24

4 - 120

120

⌨ 6.3.7 Multiplication table

Write an algorithm that prints a small multiplication table for the given integer.

Input : -5

Output:

1 * -5 = -5

2 * -5 = -10

3 * -5 = -15

4 * -5 = -20

5 * -5 = -25

6 * -5 = -30

7 * -5 = -35

8 * -5 = -40

9 * -5 = -45

10 * -5 = -50

Loops| FITPED

69

Input : 5

Output:

1 * 5 = 5

2 * 5 = 10

3 * 5 = 15

4 * 5 = 20

5 * 5 = 25

6 * 5 = 30

7 * 5 = 35

8 * 5 = 40

9 * 5 = 45

10 * 5 = 50

⌨ 6.3.8 The product of numbers without multiplication II.

Write an algorithm that detects the product for two integers (even negative ones) without

using a multiplication operation.

Input : -5 3

Output: -15

Input : -5 -5

Output: 25

Input : 2 5

Output: 10

6.4 Loops with conditions

🕮 6.4.1

Sometimes when we use loops we do not know how many times it will be repeated but we

can specify a condition till which the loop should repeat. For example: while you are hungry,

eat a cake.

Loops| FITPED

70

Execution of a loop can be done using the command while and by condition that will specify

the execution of commands in loop body.

The notation of loops with condition at beginning is following:

while (condition) {

 command;

}

The condition has to be written in the brackets.

📝 6.4.2

What keyword (command) is defined for the loop with condition at beginning?

🕮 6.4.3

Write 10-times "Hello" below each other.

The task is almost similar as in case of the for loop. Each task that needs to repeat some

commands can be done using any type of loop and it is only on our choice which loop we

will choose.

This time has the programmer a task to specify all the operations that the for loop structure

contains:

 set the start value of the control variable

 condition that terminates the loop

 execution of commands in loop

 increasing the value of the control variable

int i = 1; // initialization of control variable

while (i <= 10) { // when the condition is met, do

 System.out.println("Hello"); // command execution

 i = i + 1; // increasing the value of the variable

}

Loops| FITPED

71

📝 6.4.4

Fill in the code so 5 dots are printed:

int i = 4;

_____ (i <= _____) {

 System.out.print(".");

 i = i + 1;

}

🕮 6.4.5

Write even numbers from 8 to 24 below each other.

We will write the content of the variable that will be increased in each step by 2.

The activity will be done until the value is not 24.

int num = 8;

while (num <= 24) {

 System.out.println(num);

 num = num + 2; // we increase the value by 2

}

The task can be rewritten also to a for loop using the following code:

for(int num = 8; num <= 24; num = num + 2)

 System.out.println(num);

📝 6.4.6

Fill in the code so it prints all the numbers divided by 10 that are less than the given number.

class Example {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int max = input.nextInt();

 int num = 0;

 _____ (num < _____) _____

Loops| FITPED

72

 System.out.println(num);

 num = num + _____;

}

🕮 6.4.7

Except the loop with condition on beginning we can use also a loop with condition on end.

This type of loop executes command till the condition is met- but only in order, first it

executes and then it evaluates the condition.

The notation is following:

do {

 command1;

 ...

 commandn;

} while (condition);

For example:

int i = 1;

do {

 System.out.println(i);

 i = i + 1;

} while (i<10);

The main difference with the other loops is that the commands in the loop body is executed

at least once. After the first run is evaluated whether it shall continue with the repeat.

📝 6.4.8

Which statements are true?

 loop with condition on end will be executed at least once

 loop with condition on beginning does not have to be run any times

 loop with condition on end does not have to be run any times

 loop with condition on beginning will be executed at least once

 loop with known number of repeats will be executed at least once

Loops| FITPED

73

6.5 While loops (programs)

⌨ 6.5.1 Division remainder without division

Write a code that will print the division remainder after the division of the first number by

the second one without the use of division or modulo. In the case of zero division write "Zero

cannot be divided".

Input : 15 5

Output: 0

Input : 5 0

Output: Zero cannot be divided

Input : 10 3

Output: 1

⌨ 6.5.2 The greatest common divisor

Write a code that uses the Euclidean algorithm to find out what is the greatest common

divisor of two integers given at the input and separated by a space.

Input : 15 5

Output: 5

Input : 28 12

Output: 4

Input : 10 3

Output: 1

Loops| FITPED

74

⌨ 6.5.3 Euclidean algorithm

Write a code that will compute the greatest common divisor of two integers using the

subtraction-based version of the Euclid-s algorithm (which was Euclid-s original version). In

addition, the code should compute the smallest common multiple these two integers (using

the divisor computed within the first step). The input contains two integer numbers. Print

the greatest common divisor and the smallest common multiple.

input : 25 40

output: 5 200

input : 33 196

output: 1 6468

⌨ 6.5.4 Minimum and maximum

Write a code that will compute the min and the max values of the given series of integers.

Do not use an array of integers. The input contains the series of numbers ended by number

999999 (not a part of the series). Print the min and the max.

input : 8 4 -5 33 22 56 45 -32 0 23 999999

output: -32 56

input : 3 -3 0 -5 -33 999999

output: -33 3

Numeric Data Types

 Chapter 7

Numeric Data Types| FITPED

76

7.1 Integer

🕮 7.1.1

Integer variables are capable to save values of integral type and do following operations:

 + (addition) a + b, e.g.: 10 + 3 = 13

 - (difference) a – b, e.g.: 10 - 3 = 7

 * (multiplication) a * b, e.g.: 10 * 3 = 30

 / (integral division) a / b, e.g.: 10 / 3 = 3, where the decimal part is neglected

 % (remainder after division) a % b, e.g.: 10 % 3 = 1

📝 7.1.2

What will be the output of the following code?

class Example {

 public static void main(String[] args) {

 int a = 17, b = 5;

 int c = a / b;

 System.out.println(c);

 }

}

🕮 7.1.3

Integral numbers offer a special operation that returns the remainder after division. For its

calculation is used the operator %.

E.g.:

 10 % 3 = 1

 10 % 2 = 0

 15 % 7 = 1

 20 % 7 = 6

 10 % 0 – division by zero = error

Numeric Data Types| FITPED

77

📝 7.1.4

What will be the output of the following code?

class Example {

 public static void main(String[] args) {

 int a = 17, b = 5;

 int c = a % b;

 System.out.println(c);

 }

}

🕮 7.1.5

Working with integral numbers means also working with negative numbers that represent

the other half of all of the integral numbers. Negative number is written using the symbol -

placed before the numerical value.

E.g.:

int c = -1;

int d = 15 + -5;

If we want to stay loyal to math notation, we can enclose the negative value into brackets,

e.g.:

int e = 15 / (-5);

📝 7.1.6

What will be saved in varieble p after executing the following commands?

int a = -3;

int b = 15 / -5;

int p = a - b;

Numeric Data Types| FITPED

78

7.2 Incremental and decremental operator

🕮 7.2.1

Change of the value of variable by 1 is done using the incremental and decremental operator

that replace the "long" notation that serve to increase or decrease the value of variable by

1.

Instead of:

i = i + 1;

we can use the incremental operator ++:

i++;

Instead of:

i = i - 1;

we can use the decremental operator --:

i--;

📝 7.2.2

What will be saved in the variable a after the execution of the following commands?

int a = 10;

a++;

a = a – 5;

a++;

a--;

🕮 7.2.3

Operators ++ and -- can be placed also before the variable. The usage has in both cases

similar efect:

Numeric Data Types| FITPED

79

int a = 1;

a++;

System.out.println(a);

int a = 1;

++a;

System.out.println(a);

However if we use it in expressions, it behaves different:

++a will firstly increase the value of the variable and then it is used in the expression

int i = 10;

int j = 3;

int k = 0;

k = ++j + i; // result: k = 4 + 10 = 14 a j = 4

 a++ will firstly use the value of the variable in the expression and after the calculation it

will be increased

int i = 10;

int j = 3;

int k = 0;

k = j++ + i; // result: k = 3 + 10 = 13, ale j = 4

📝 7.2.4

What will be the output of the following code?

class Example {

 public static void main(String[] args) {

 int a = 5, b = 10;

 int c = a++ * --b;

 System.out.println(c);

 }

}

Numeric Data Types| FITPED

80

📝 7.2.5

Assign the variables correct values:

 int a = 0;

 int b = a++; // after the operation contains a the value _____, b contains

the value _____

 int c = ++a + 5; // after the operation contains a the value _____, c

contains the value _____

 b = b++ + ++a; // after the operation contains a the value _____, b

contains the value _____

🕮 7.2.6

Incremental and decremental operators are used to shorten the notation. The change of

value can be done e.g. inside the condition where this notation saves us one row of code.

We can write:

int i = 0;

do {

 System.out.println(i);

} while (i++ < 10);

instead of:

int i = 0;

do {

 System.out.println(i);

 i++;

} while (i < 11);

📝 7.2.7

How many values will print the following loop?

int i = 0;

while (++i < 5)

 System.out.println(i);

Numeric Data Types| FITPED

81

🕮 7.2.8

In addition to the incremental and decremental notation we can use also other shortening

notation of other math operations, e.g. assigning:

i = i + 5;

can be shortened to

i += 5;

which means that the variable on the left side will be assigned the original value added by

5.

For

n *= 3;

will be the value of variable n multiplied by 3 and saved to the variable n.

📝 7.2.9

What value will be printed after executing the following commands?

class Example {

 public static void main(String[] args) {

 int a = 0;

 a += 7;

 a *= 2;

 int b = 20 % a;

 b--;

 b += a;

 System.out.println(b);

 }

}

🕮 7.2.10

Many times there are tasks where we have to decide whether the given value is even or odd.

Numeric Data Types| FITPED

82

When searching for solution, we can use the fact that even numbers divided by 2 give the

remainder after division 0 and odd numbers give 1.

E.g.:

 10 % 2 = 0 – is even

 11 % 2 = 1 – is odd

📝 7.2.11

Fill in the code so that it decides whether the given integer value is even or odd:

import java.util.Scanner;

class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input._____();

 if (a _____ 2 == _____)

 System.out.println(“Value is even“);

 else

 System.out.println(“Value is odd“);

 }

}

7.3 Number types

🕮 7.3.1

One of the characteristics of data types of variable is the range of values it can save, i.e.

minimum and maximum value.

In case of data type int that are values from -2147483648 to 2147483647.

Except of this type, there are other data types to save integral values:

 byte: -128..127

 short: -32 768 .. 32 767

 int: -2 147 483 648 .. 2 147 483 647

 long: -9 223 372 036 854 775 808 .. 9 223 372 036 854 775 807

Numeric Data Types| FITPED

83

These data types are used when we require less or more higher range for saving values.

📝 7.3.2

Order the data types by the range of values from the lowest to the highest.

 byte

 short

 long

 int

🕮 7.3.3

Many tasks can be solved using integral operations but there are tasks where we need to

use decimal numbers. To save decimal (real) numbers is used the data type double.

Declaration

double c;

makes it possible to the variable c save values from range -9 223 372 036 854 775 808 to

9 223 372 036 854 775 807 where the values can be decimal too.

The real numbers are written in standard format:

3.1415296536, 583.45

or in scientific format:

5.8345e2

which means 5.8345 * 102 = 583.45.

Numeric Data Types| FITPED

84

📝 7.3.4

Fill into the declaration the correct data type:

_____ a; // integer numbers from -128 to 127

_____ b; // integer numbers with the highest range

_____ c; // decimal numbers

🕮 7.3.5

The decimal part is separated in code by decimal point, e.g.

5.0

3.145

0.0001

etc.

📝 7.3.6

Which values represent the real numbers in Java programming language?

 0.5

 5.0

 0,5

 5,0

Numeric Data Types| FITPED

85

7.4 Real numbers

🕮 7.4.1

When you combine the integer and real type, the result is a real number (number with

decimal point).

The output of the following code:

double a = 10; // real number

int b = 5; // integer number

System.out.println(a – b); // real number

is a real number. This is represented by the following notation of the result

5.0

Despite the result is integer number (5), to obtain it was used a double type variable, so

the result has to be written in this data type

📝 7.4.2

What is the result of the following code?

double a = 2, b = 4.5;

double c = a * b;

System.out.println(c);

 9.0

 9

 9.00

 9,0

🕮 7.4.3

Often it is neccessary to transform the decimal number to integer one. With a simple

assignment it will be not working.

The most used math function for this use is rounding. This function (round) is availible in

the library Math, what is written following:

Numeric Data Types| FITPED

86

double x = 10.51;

long a = Math.round(x);

System.out.println(x);

The result of the operation is integer value not of the int type but long type that can save

bigger values.

📝 7.4.4

Fill in the following function to round the content of the variable a:

double a = 9.991;

long b = _____._____(a);

🕮 7.4.5

If we need to transfer the long type variable into an int type variable, we need to retype

it. This will change the value from the original type so that it will be possible to save it into

a new type and its value will be the same.

The notation

long b = 15;

int c = (int) b;

will update the content of b variable so that it can be assigned to the c variable and copied

to it.

Warning:

This operation is not flawless. If you try to input into variable with bigger

range into a variable with smaller range, then the it will be executed but the

value will not be correct.

The programmer has to think about this kind of situation and the secure the

code before this mistake.

Numeric Data Types| FITPED

87

📝 7.4.6

Make the retype of the variable d which is of a long type:

int c = _____d;

🕮 7.4.7

Retype can be realised also between real and integral values. By reptype of real variables

will the decimal part be removed.

After executing the following code:

double c = 5.8;

int d = (int) c;

will the variable d contain the value 5.

📝 7.4.8

Fill in the values that will be in the variables after executing the following commands:

double c = 10.51;

long d = Math.round(c); // c will contain _____

int e = (int) c; // e will contain _____

🕮 7.4.9

To round the number to specific decimal points is used the following approach.

E.g. to round to two decimal points:

double pi = 3.14159;

double pi2 = Math.round(pi*100)/100;

Multiplying the value of variable by 100 will move the decimal point by 2 places to 314.159

This value will be rounded using the function round to integral number, i.e. 314

Numeric Data Types| FITPED

88

and finally it will be divided by 100 and the decimal point will be moved by 2 places to the

left.

The result will be 3.14

📝 7.4.10

Fill in the values so that the variable a will be rounded to one decimal point and variable b

will be rounded to three decimal points:

double a = 6.845;

double b = 8.55478;

double new_a = Math.round(a*_____)/_____;

double new_b = Math.round(b*_____)/_____;

📝 7.4.11

What will be the result of the following code?

double a = 100;

double b = Math.round(a/3*100)/100;

double c = a - b;

int d = (int)c;

System.out.println(d);

🕮 7.4.12

Loading a real number from the input to the program is done using the command

nextDouble().

The following code will read two decimal numbers from input and calculate its division.

class App {

 public static void main(String[] args) {

 Scanner vstup = new Scanner(System.in);

 double a = vstup.nextDouble();

 double b = vstup.nextDouble();

 double division = a / b;

 System.out.println(division);

 }

Numeric Data Types| FITPED

89

}

📝 7.4.13

Fill in the code to calculate the content of a square:

class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 double a = input._____;

 double cont = a _____ a;

 System.out.println(cont);

 }

}

7.5 Number types (programs I.)

⌨ 7.5.1 Division and remainder

Write a code that divides two integers to determine the proportion and remainder (use

integer division operations). Treat the division by zero at the beginning of the program and

if this happens write "Zero cannot be divided". Otherwise, list the division result and the

remainder separated by a space.

Input : 4 5

Output: 0 4

Input : 9 0

Output: Zero cannot be divided

Input :2 2

Output:1 0

⌨ 7.5.2 Even numbers 1 - 20

Write an algorithm that prints even numbers from 1 to 20.

Numeric Data Types| FITPED

90

Output:

2

4

6

8

10

12

14

16

18

20

⌨ 7.5.3 Triangle

Write a code that will check whether the given three numbers may be the sides of the

triangle. The input contains three double numbers. If these values may describe triangle

sides then print the area of that triangle. Otherwise, print -1.

input : 3 4 5

output: 6.0

input : 1 2 3

output: -1

⌨ 7.5.4 Sum of real numbers

Write a code which for two real numbers (entered in a single line and separated by spaces),

calculate their sum, round it and write it out.

input : 8.2 2.5

output: 11

input : 1.5 3.3

output: 5

Numeric Data Types| FITPED

91

⌨ 7.5.5 Area and perimeter of circle

Write a program that calculates the area and perimeter of the circle for the specified radius

(double decimal). Let pi be 3.14. Round the results (using the Math.round() command)

and separate the results with a space.

input : 5

output: 79 31

input : 4.5

output: 64 28

⌨ 7.5.6 Perfect number

In number theory, a perfect number is a positive integer that is equal to the sum of its proper

positive divisors, that is, the sum of its positive divisors excluding the number itself. Write a

code that will check if the given number in perfect. The input contains the positive integer

number. Print the value true if the given number is perfect or false if not.

input : 28

output: true

input : 999

output: false

⌨ 7.5.7 Count of divisors

Write a code that detects and prints the number of divisors for the given number.

Input : 7

Output: 2

Input : 12

Output: 6

Numeric Data Types| FITPED

92

Input : 100

Output: 9

⌨ 7.5.8 Count bits of 1

Write the code that will compute a number of bits set to 1 within the binary representation

of the given number. Input the integer number. Print the number of ones.

input : -1

output: 32

input : 0

output: 0

input : 1

output: 1

input : 1234567890

output: 12

⌨ 7.5.9 Equation with complex

Write a code for the solution of the quadratic equation of the form: ax2 + bx + c = 0.

Code should:

 read three real numbers

 print complex roots as variable u, w, v, z (they represent complex numbers u+wi

and v+zi)

 if a == 0, print -1

input : 1 1 2.5

output: 2 -0.5 -1.5 -0.5 1.5

Numeric Data Types| FITPED

93

input : 0 1 2

output: -1

⌨ 7.5.10 Coins

Write a code that will print a set of EURO coins that make up the given amount. Available

coins are: 1c, 2c, 5c, 10c, 20c, 50c, 1€ and 2€. Input the amount of money is double type.

Print the coins in descending order, separating the values with a space.

input : 5.25

output: 2€ 2€ 1€ 20c 5c

input : 0

output:

⌨ 7.5.11 BMI index

Write a code that calculates the BMI index and print whether you are overweight or not.

BMI (body mass index) is calculated as the ratio of the weight in kilograms and the square

of the height in meters. BMI<18.5 underweight, 18.5<= BMI<25 normal weight, 25<=

BMI<30 overweight, BMI>30 obesity.

Input : 45 1.70

Output: underweight

Input : 90 1.65

Output: obesity

Input : 80 1.80

Output: normal weight

Numeric Data Types| FITPED

94

7.6 Number types (programs II.)

⌨ 7.6.1 Sorting numbers

Write a code that for two integers given at the input ensure that the larger of them is stored

in variable a, the smaller in variable b. If the numbers are equal print to the console:

"Numbers are equal", otherwise prints first the bigger and then the smaller value.

Input : 3 2

Output: 3 2

Input : 2 8

Output: 8 2

Input : 2 2

Output: Numbers are equal

⌨ 7.6.2 Complex numbers

Write a code that will calculate the sum, difference and product of given complex numbers.

Input four numbers of type double (a, b, c, d) that form two complex numbers (a+bi and

c+di). Print the sum, difference and product as 6 numbers (three pairs - first for the sum,

second for the difference and the third for the product of given complex numbers).

Input : 1 2 3 4

Output: 4.0 6.0 -2.0 -2.0 -5.0 10.0

Input : 10 0 20 0

Output: 30.0 0.0 -10.0 0.0 200.0 0.0

Input : 0 10 0 20

Output: 0.0 30.0 0.0 -10.0 -200.0 0.0

Numeric Data Types| FITPED

95

⌨ 7.6.3 Sorting without an array

Write a code that will sort the data placed in five variables (without using an array). Input

contains five integer numbers. Print these numbers in ascending order. If there is not 5

numbers on the input, write -1.

Input : 2 1 4 3 6

Output: 1 2 3 4 6

Input : 5 5 4

Output: -1

⌨ 7.6.4 Prime number

Write the code that will check whether the given number is a prime number. Input is an

integer number greater than 0. Print true if the number is prime and false otherwise.

input : 5

output: true

input : 9

output: false

input : 1

output: false

⌨ 7.6.5 Value from interval

Write a code to see if the given number is in specified interval ("yes" or "no" answer). At the

beginning of the algorithm check that the interval you entered is correctly sorted (eg. not

5,2 but 2,5), if not, correct it.

As input is a triple of integer values representing the two interval boundaries and the given

value.

Numeric Data Types| FITPED

96

Input : 5 10 7

Output: yes

Input : 10 20 10

Output: yes

Input : 30 4 85

Output: no

⌨ 7.6.6 Day or night

Write the code that determines whether it is day or night, respectively light or dark, based

on the specified hour (1-12) and the time period (0 = morning, 1 = afternoon). Suppose the

sun rises at 6 am and sets at 6 pm.

Input : 10 0

Output: day

Input : 8 1

Output: night

Input : 12 0

Output: day

Other Data Types

 Chapter 8

Other Data Types| FITPED

98

8.1 Logical type and logical expression

🕮 8.1.1

We are working often also with logic values that can have the value true or false.

Data type boolean is used to save this kind of values.

Often it is the result of comparisson or evaluation of a condition.

E.g.:

the condition whether a > b, can be evaluated by the following notation using the if

structure:

if (a > b)

but the result of evaluation of the expression can be saved into a variable

boolean res;

int a = 10, b = 5;

res = a > b;

System.out.println(res);

If the value a higher than b then the variable res is the result as true. Otherwise (less or

equal) will the variable res be of value false.

📝 8.1.2

Declare the variable t as variable to save true/false values and assign it the result of the

comparisson of variable a and the value 5 for equality.

_____ t;

int a = 7;

t = a _____ 5;

🕮 8.1.3

The logical type is linked with comparisson operators so we can say again:

Other Data Types| FITPED

99

 > - is bigger, e.g. a > b

 >= - is bigger or equal, e.g. a >= b

 < - is less, e.g. a < b

 <= - is less or equal, e.g. a <= b

 == - is equal, e.g. a == b

 != - is not equal, e.g. a != b

Usage of symbols in wrong order will raise an error (e.g.: =>, or <>).

📝 8.1.4

Which comparisson operators are correct?

 >=

 <=

 ==

 !=

 <>

 =>

 =<

🕮 8.1.5

The result of comparisson can be used also in conditions so that we will get the result of the

expression and then use it in condision, e.g.

int a = 10, b = 5;

boolean res = a == b

if (res == true)

 System.out.println("Values are equal");

else

 System.out.println("Values are different");

Notation

Other Data Types| FITPED

100

if (res == true)

can be usually written following

if (res)

because the result of the condition res == true is dependent on the value of the variable

res.

If it is true,

if (res == true)

we ask if it truth is truth (true == true) – result is true.

If the variable contains the value representing untruth:

if (res == true)

we ask if the untruth is truth (false == true) – result is false.

📝 8.1.6

Fill in the code so that it print whether the number is negative or positive.

import java.util.Scanner;

class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 double a = input._____();

 boolean negative = a _____ 0;

 if (negative)

 System.out.println("negative");

 System.out.println("positive");

 }

}

Other Data Types| FITPED

101

🕮 8.1.7

Despite the verification whether the condition is truth it is right to also use the notation: if

it is not truth then, e.g.:

int a = 5, b = 0;

boolean zeroDivider = b == 0;

if (!zeroDivider)

 int division = a / b;

....

The notation beginning with ! will negate the result of the expression or content of the

variable after the exclamation mark- from value true will be made false and vice versa.

In this case contains the variable zeroDivider the value false and the notation in the

condition means following:

 if it is not truth that zeroDivider then calculate the division,

 or if zeroDivider contains the false value then execute,

 or if the negated content of the variable zeroDivider is true, the execute.

📝 8.1.8

What kind of symbol is used to negate the content of a logical variable?

 !

 ?

 -

 **

🕮 8.1.9

Execution the actions until the condition is not met or until the content of the logical variable

is false is usually used in loops- until it is not true, execute commands.

boolean end = false;

int i = 1;

while (!end) { // until the variable end is false will be the loop executed

 …

 i++;

Other Data Types| FITPED

102

 if (i > 10) end = true;

}

📝 8.1.10

Fill in the code so that the programm will read the values from the input till the input value

is not zero. It will also write whether the number is even or odd.

import java.util.Scanner;

class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 _____ isZero = false;

 do {

 int a = input.nextInt();

 isZero = a _____ 0;

 if (a _____ 2 == 0)

 System.out.println("even");

 else

 System.out.println("odd");

 } while (_____isZero);

 System.out.println("end");

 }

}

8.2 Compound conditions

🕮 8.2.1

Often you combine in codes many conditions that can be in different relations. Mostly we

are in following situations:

 all of the conditions have to be met at the same time,

 it is enough that only one of the conditions is met.

Based on the given age of the employee decide whether he/she is in productive age-

between 18 and 70 years old.

The task can be solved following:

Other Data Types| FITPED

103

int age = input.nextInt();

if (age >= 18) // first condition is met

 // we verify whether the age is also less then the upper boundary

 if (age <= 70) // both of the conditions are met

 System.out.println("he/she is in productive age");

A simple notation makes it possible to write both notations into a one complex condition.

We use a logical connector AND (we use & in Java) to secure that both conditions have to

be met at the same time.

So the notation of two conditional commands is shortened by its combination into one

complex condition:

int age = input.nextInt();

if ((age >= 18) & (age <= 70))

We put into the brackets each conditions as well as the whole expression.

📝 8.2.2

Fill in the expression so that it is true if both conditions are met at the same time:

...

if _____ (month >=3) _____month <= 6) _____

 System.out.println("spring");

🕮 8.2.3

Except the & operator can be used the alternative &&. Between the operators && and & is

the difference that && will end the evaluation of the logical expression in the moment it

finds out that the condition is not true and the following evaluation does not have effect on

the result, where & evaluates till the end.

Thinking about their differences has meaning only when the evaluation consists also of

change of variables that are in the evaluation, e.g.:

int i = 0, j = 10;

boolean test;

test = (i > 10) && (j++ > 9); // will end by &&

 // test = false, j = 10

test = (i > 10) & (j++ > 9); // will go through all executions

Other Data Types| FITPED

104

 // test = false, j = 11

📝 8.2.4

What will be the output of the following code?

int a = 5, b = 7;

System.out.println(!(a > b)&& (b > a));

🕮 8.2.5

In some cases it is necessary that only one condition needs to be met. In that case is used

logical connector OR written using the symbol |.

if ((a>0) | (b<0))

Evaluation of the expression is true if at least one of the conditions is met, i.e. it is enough if

a > 0 or b < 0.

If both conditions are met, the expression is also true.

Except the | operator can be used the alternative operator ||. Between the | and || operators

is the difference that || will end the evaluation of the logical expression in the moment it

finds out that the condition is not true and the following evaluation does not have effect on

the result, where | evaluates till the end.

📝 8.2.6

Fill in the code so that it print if the number is acceptable if it is positive or even. Evaluate

the condition most effectively.

int num = input.nextInt()

if ((num > _____) _____ (num _____ 2 _____ 0))

System.out.println("accept");

Other Data Types| FITPED

105

🕮 8.2.7

The combination of logical expressions and logical variables does not have to be restricted

only to two elemets. The evaluation is then done so, that first are evaluated the expressions

in brackets, then the negation and then it goes from left to right.

E.g.

boolean h1 = false;

int a = 5, b = 7;

boolean res = (!(a > b) || (b – 5 < a) && h1 || !h1)

will be evaluated as:

(!false || true && false || !false)

(true || true && false || true)

(true && false || true)

(false || true)

(true)

📝 8.2.8

Make sure that the following fragment of code is outputed the text "do sport" in case that

the division of height and weight is less than 2 or when the weight is higher than 150 kg.

Evaluate the conditions most effectively.

if ((height/wieght _____ 2) _____ (weight > _____))

 System.out.println("do sport");

📝 8.2.9

Make sure that the following code writes the following text with effective evaluation of

conditions:

 if the average is 1,5 or better – "excellent"

 if the average is bigger than 1,5 and less or equal than 4 – "good"

 if the average is bigger than 4 – "bad"

Other Data Types| FITPED

106

 if (average <= 1.5) System.out.println("excellent");

 if ((average > 1.5) _____ (average _____ 4)) System.out.println("good");

 if (average > 4) System.out.println("bad");

📝 8.2.10

What will be the output of the following code as a result of the expression?

int a = 5, b = 7;

System.out.println(!(a > b) && (b > a));

 True

 False

📝 8.2.11

What is the result of the following expression:

int a = 5, b = 5, c = 7;

boolean res = (!(a == b) && (++b - 1 == a) && (c + 3 > a) || (b - c != 0));

 True

 False

📝 8.2.12

What is the result of the following expression:

int a = 5, b = 5, c = 7;

boolean res = ((a >= b) && (b - 1 == a) && (c + 3 > a) && (b - c != 0));

 False

 True

📝 8.2.13

What is the result of the following expression:

int a = 5, b = 5, c = 7;

boolean res = !((a > b) & (b - 1 == a) || (b - c != 0));

 False

Other Data Types| FITPED

107

 True

8.3 Char

🕮 8.3.1

A narrowly specialized data type is a char type that allows a single character to be stored in

a variable of this type.

Declaration is following:

char x;

The assigned value is enclosed in apostrophes

x = 'A';

The evaluation of the content of the variable is done using a standard comparison:

if (x == 'a')

Usage of this data type is very limited but it can fasten up some tasks.

📝 8.3.2

Declare a variable that can save one character:

_____ p = 'a';

🕮 8.3.3

Values saved in char type variable can be compared also based on the alphabet order 'a' <

'b' < 'c' … < 'z'.

where all of the uppercase letters are less than all of the lowercase letters

'A' < 'B' … < 'Z' < 'a' < … < 'z'

Other Data Types| FITPED

108

A hint can be for us a simplified coding ASCII table that contains 255 base symbols (despite

that nowadays are alphabets coded using Unicode/UTF8).

First 32 symbols are controlling but the other are used often.

Since the char type is based on a coding table, the characters 'a' and 'A' are not the same

(are not equal).

📝 8.3.4

Which of the statements are true?

 'Z' < 'a'

 'c' < 'f'

 '1' < 'q'

 'a' < 'A'

 'a' < 'Z'

 '9' < '&'

Other Data Types| FITPED

109

🕮 8.3.5

How do we know whether the given character is a lowercase or uppercase letter?

If the given character is placed:

 between the first uppercase and last uppercase character, then it's a uppercase

letter,

 between the first lowercase and last lowercase character, then it's a lowercase letter.

char c = '1';

if ((c >= 'a') && (c <= 'z'))

 System.out.println("lowercase letter");

 else if ((c >= 'A') && (c <= 'Z'))

 System.out.println("uppercase letter");

 else

 System.out.println("not a letter");

📝 8.3.6

Fill in the following code where you can find out whether the character in the variable ch is

a digit:

if ((ch >= '_____') && (ch <= '_____'))

 System.out.println("is a digit");

 System.out.println("is not a digit");

🕮 8.3.7

Except the usually used symbols are in outputs used also escape sequencies that can be used

to print some special characters:

 \' – inputs into text apostrophe

 \" – inputs into text quotation marks

 \\ – inputs into text backslash

or manipulation with cursor by the output:

Other Data Types| FITPED

110

 \t – inputs into text tabulator

 \b – inputs into text backspace (will delete the character before \b)

 \n – inputs into text a new row (text after the symbol will begin in a new row)

E.g.:

System.out.println("t: text \t with \t tabulators");

System.out.println("b: let\bter");

System.out.println("n: one \n two \n three");

Výstup:

t: text with tabulators

b: leter

n: one

 two

 three

📝 8.3.8

Fill in appropriate escape sequence to that the output is following:

She said:

"Come tommorrow."

System.out.println("She said: _____ _____Come tommorrow._____");

8.4 Other data types (programs)

⌨ 8.4.1 Compare three numbers (one condition)

Write the code that uses one compound condition to determine if the three integer values

entered on the input are identical. If so, it will print "Are identical" otherwise print "Are not

identical".

Input : 4 4 4

Output: Are identical

Other Data Types| FITPED

111

Input : 9 0 9

Output: Are not identical

⌨ 8.4.2 Hex value

Write the code that will translate hexadecimal digits (A - F, accept lower and uppercase) to

its decimal values.

The input contains an character. If it is the hexadecimal digit print its decimal value else print

-1.

input : A

output: 10

input : x

output: -1

input : b

output: 11

⌨ 8.4.3 Letter or digit?

Write the code that detects for input character that it is a number, letter, or other character.

On the console, it prints: for the digit "digit", for the letter "letter", for the other "other

character".

Vstup: 9

Výstup: digit

Vstup: a

Výstup: letter

Vstup: !

Other Data Types| FITPED

112

Výstup: other character

String I.

 Chapter 9

String I.| FITPED

114

9.1 About String

🕮 9.1.1

In addition to variables storing primitive types, we need often also to use more extensive

data. To save longer text (till the range of 2 GB) we use the String data type.

The variable declaration is following

String data;

The content put into the String variable type is enclosed in quotes:

data = "Sun is shinning";

The content can be to the variable saved also at the declaration:

String data = "Sun is shinning";

📝 9.1.2

Declare the variable a so that it is possible to save strings to it and save there the text data.

_____ a = _____data_____;

🕮 9.1.3

String is not a simple data type but it goes about a class that contains special methods

that allow to manipulate with the saved content. More about the classes will be said in the

next chapters but for now it's enough to know that the String variable type will have to

ability to browse, count the characters, etc.

The most simple operation is getting the number of characters of the saved content. We get

it using the length() method.

The method is separated from the name using the dot "." and ends with brackets:

String data = "Mama";

int len = data.length();

System.out.println(len);

String I.| FITPED

115

Into the variable len is saved the number of characters that are contained in the variable

data, i.e. it's 4.

📝 9.1.4

Fill in the code so that it returns the count of characters saved in the variable a.

_____ a = "Winter in forrest";

int l = a_____length_____;

System.out.println(l);

 []

 ()

 ->

 string

 ,

 String

 .

🕮 9.1.5

Strings can be connected very simple - the addition operator is used or the concat()

method.

String a = "Steven";

String b = "Spielberg";

String c = a + b; // variable c contains the text StevenSpielberg without

space

String d = a + " "; // variable d contains the text "Steven " with space at

the end

d.concat(b); // content of the variable d is changed so that the content

of variable b is added - the result in the variable d will be "Steven

Spielberg"

📝 9.1.6

Make sure that in the variable c is the content of the variables in order b and a.

String a = "200", b = "100";

String c = _____ _____ _____; // the value will be 100200

String I.| FITPED

116

🕮 9.1.7

If we want to express the empty content of the integral variable we often input the value 0.

If we want to express the empty content of the String type variable we use the assignment:

String s = "";

sometimes its used also

String s = null;

The first entry will create the variable containg the empty string, the second the variable

containing nothing.

The method to approach the empty content is depends on the programmer where the

reasons for this double approach are related to the concept of classes (that we will talk about

later).

By manipulating with the variable containing null is this value in some cases taken as four

character text so it's needed to verify if the given variable is not empty:

if (a == null)

 ...

📝 9.1.8

Make sure that in the variable c is the content of the variables in order b and a.

String a = "200", b = "100", c = _____;

c.concat(_____);

c._____(_____);

System.out.println(c);

🕮 9.1.9

Since we are unable to predict the given string number of characters, we have to read the

whole row using the nextLine() method

The code to read the string using the Scanner is following:

String I.| FITPED

117

import java.util.Scanner;

public class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String a = input.nextLine();

 System.out.println(a);

 }

}

📝 9.1.10

Fill in the code so that it reads the string and returns the number of its characters.

import java.util.Scanner;

public class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 _____ a = input._____();

 int l = a._____();

 System.out.println(l);

 }

}

 nextInt

 string

 length

 nextLine

 String

 next

🕮 9.1.11

The result of the connection of any variable with string is a string. If we add (using the +

operator) content of the variable to any string then this content will be transformed

(converted) to string and the result is then connection of two and more strings.

E.g.:

int a = 10;

String b = "the content of variable a is: " + a; // converts int

String I.| FITPED

118

double c = a / 3;

String d = "the content of variable c is: " + c; // converts double

System.out.println(b + "\n" + d); // converts char

Using this we can also output text and numbers:

int res = 100 + 15 / 3;

System.out.println("Result is: " + res);

📝 9.1.12

Fill in the part of the code so that the final output was in form of addition of two variables

(e.g. 2 + 3 = 5, not 2+3=5).

int a = 2, b = _____;

int c = a _____ b;

System.out.println(a + " _____" + _____ + " _____" + c);

🕮 9.1.13

Data types are divided to:

 primitive

 reference

Primitive data types

 for the declaration is in memory reserved so much space how many the data types

needs (e.g. int needs 4 bytes, long - 8 bytes, char - 2 bytes, double - 8 bytes, etc.)

 size of the reserved space is not changed during the existence of the variable

 the content of the variable is saved always to the place where is the reserved space

All of the mentioned types were primitive.

String I.| FITPED

119

Reference data type

 it is not possible to decide how many space is needed for then to reserve because

two variables of the same type can have different claim on the memory

 while the variable exists, its memory requirements may change

 the typical example of the data type is String that can save any long text (string),

e.g. "mama" or also "mama has little Ema at home"

 in this case is by the declaration reserved in memory only space to save the reference

to the memory

 when you input new value then is in the memory always looked for a coherent

memory block with the needed size and the new value will be saved into it and the

content is updated to the new position of the memory block.

int num = 10;

String name = "Hello";

📝 9.1.14

Choose the primitive data types:

 int

String I.| FITPED

120

 double

 char

 boolean

 long

 String

9.2 Data type selection

🕮 9.2.1

By now we worked only with variables that saved numbers. Before the use of the variable

we had to declare it. Each declaration contains a data type and the name of the variable

int n;

int number, result;

Data type defines the type of values that can the variable obtain. It can be, e.g.:

 integral numbers

 decimal numbers

 character (letter)

 text string, etc.

Except of that it defines also:

 the amount of memory that will be reserved for the variable

 a set of values that can be stored in a variable

📝 9.2.2

Declare a variable number that will be used to save integral values:

_____ number;

String I.| FITPED

121

🕮 9.2.3

The reason for the existence of data types is the acceleration of operations and their

limitation to selected data types.

E.g.

by adding integral values 5 + 10 we get the value 15,

but in case we add text values then the result is connection of the strings:

"5" + "10" = "510".

Function abs (absolute value) is defined for numbers but not for text strings, etc.

📝 9.2.4

What defines a data type?

 the amount of memory that will be reserved for the variable

 operations and functions that can be applied to values of that type

 data that can be stored in the variable

 how to list the variable content

🕮 9.2.5

Base data types in Java are:

 numerical

 we already worked with integral numbers (int – e.g.: 10)

 decimal numbers (double – e.g.: 1.3)

 text

 character – type able to save one character (char – e.g. ‘m’)

 string – can save text – sequence of characters (String – e.g. "my name is Ema")

 logical

 saves the truth value (boolean – only values true or false)

String I.| FITPED

122

📝 9.2.6

Choose the correct data type to save the given value:

_____ p1 = 1034;

_____ p2 = "Warning ";

_____ p3 = 'A';

_____ p4 = true;

_____ p5 = 1.5;

 double

 int

 String

 int

 boolean

 String

 boolean

 char

 double

 char

9.3 Functions to work with string

🕮 9.3.1

The String consists of characters. Each character has its place in the string that is defined by

the index. Java counts elements in any list so, that it starts from zero.

The first character in string is on the position 0, second is on the position 1, etc. The last

character is places on the position decreased by one from the whole count of characters in

string.

E.g. for:

String data = "Madonna";

are characters placed on each position following:

String I.| FITPED

123

The count of characters in string is 7 where the last character is on the position 6.

📝 9.3.2

What character is placed on the position 3 of the string?

String data = "Indiana Jones";

🕮 9.3.3

To save the characters we use the data type char. If we want to read and save a specific

character, we use the char variable and the ability of the String variable to return a

character of a given position:

char m = myString.charAt(position);

String data = "Indiana Jones";

char begin = data.charAt(0); // returns the first character of string - I

char c = data.charAt(5); // returns the character on the position 5

(sixth) – n

int l = data.length(); // returns the count of all characters in

string

char end = data.charAt(l-1); // returns the last character

The length of the string is 13 in this case (including the space) and the character on the last

position has index 12.

📝 9.3.4

Fill in the code so that the last character of the string is printed.

String data = "Amadeus";

int ln = data._____();

System.out.println(data._____(ln-2));

String I.| FITPED

124

📝 9.3.5

Fill in the code that finds out whether the given string begins with the character "a" or "A".

import java.util.Scanner;

public class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String a = input._____();

 char first = a._____(_____);

 if ((first == _____a_____) || (first == _____A_____))

 System.out.println("it does contain");

 else

 System.out.println("it does not contain");

 }

}

🕮 9.3.6

Often we need to get from the string not only one character but a substring. To obtain the

part of the string is used a substring method. Its basic form defines the beginning position

and the ending position of the substring.

Character chosen at the ending position is not counted to the substring. The method takes

into account the characters from the beggining position to the character before the ending

position:

String data = "Phoenix";

System.out.println(data.substring(2,5)); // prints characters on the

position 2-4 (so it does not take 5 into account) "oen"

String I.| FITPED

125

📝 9.3.7

Make the output to print the string "maged".

String data = "Armagedon";

System.out.println(data._____(2,_____);

🕮 9.3.8

The substring method has also a second form. In the case when we input only one

parameter it will return a substring from the given position till the end of the string.

String data = "Armagedon";

String subS = data.substring(4); // will contain substring beginning on the

position 4, i.e. "gedon"

📝 9.3.9

Fill in the code so that the final string does not contain the first character of the original one:

String data = "Winter";

String subS = data._____(_____); // will contain the substring "inter"

🕮 9.3.10

While the data from primitive types are compared using ==, in case of reference variables

is this not possible because its content represents a reference (link) to a place in the

memory.

Comparison of string is done using the method equals that is used through following

notation:

str1.equals(str2)

where the result of the method is true when the variables str1 and str2 contain a simmilar

string, e.g.:

String a = "mama";

String b = "papa";

if (a.equals(b))

String I.| FITPED

126

 System.out.println("simmilar");

else

 System.out.println("different");

The following notation is possible

"mama".equals("papa")

or any other alternative ones.

📝 9.3.11

Fill in the code comparing two strings from the input:

import java.util.Scanner;

public class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String a = input._____();

 String b = input._____();

 if (a._____(_____))

 System.out.println("similar");

 else

 System.out.println("not similar");

 }

}

 b

 nextLine

 nextInt

 nextInt

 nextLine

 a

 equals

🕮 9.3.12

Two strings that differ only by the lowercase or uppercase are not equal, e.g. „mama“ and

„Mama“.

String I.| FITPED

127

But because many people take these kind of strings as simmilar, we can use a method that

ignores the lowercase or uppercase characters and take the strings as simmilar if they differ

only by the uppercase or lowercase.

This alternative is possible through method equalsIgnoreCase() used in following

manner:

String a = "mama";

String b = "MamA";

if (a.equalsIgnoreCase(b))

 ...

that returns in this case true.

📝 9.3.13

Fill in the code the correct methods and variables:

import java.util.Scanner;

public class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String a = input._____();

 String b = input._____();

 if (a._____(_____)) System.out.println("similar content");

 if (a._____(_____)) System.out.println("similar also the lowercase

and uppercase letters");

 }

}

9.4 Basic strings (programs)

⌨ 9.4.1 Greeting

Write the code that for the name entered at the input, of String type, print a greeting in the

form of "Hello" space name.

Input : Peter

Output: Hello Peter

String I.| FITPED

128

Input : Anna

Output: Hello Anna

⌨ 9.4.2 Greeting II.

Write the code that after entering a salutation, first name and last name in a row below it,

prints a sentence that begins with a greeting, adds a comma, and addresses the user in the

first name, last name.

Input : Good day

Peter

Carrot

Output: Good day, Peter Carrot

Input : Hello

Anna

Soul

Output: Hello, Anna Soul

⌨ 9.4.3 Number of characters

Write a code that prints the number of characters it contains for the specified string.

Input : MAMA

Output: 4

⌨ 9.4.4 Palindrome

Write a code that will reverse the string of characters (String). It should take the following

chars from the first string and put each of them to the beginning of the second one. The

input contains the string and the output the original string, the reversed string and the value

true if they are identical or false if not.

Input : ABBA

Output: ABBA ABBA true

String I.| FITPED

129

Input : program

Output: program margorp false

9.5 String and number

🕮 9.5.1

So far we have used numerical and text (string) data types. The conversion of values

between the data types is called conversion or retype.

Retype was done by noting the type to which we want the value convert to, in brackets, e.g.:

double c = 10.5;

int d = (int) c;

This notation can be used in case of numerical types but in case of string conversion to

number it is not possible.

Conversion of number to string is very easy, we use it by printing. In basis its enough to add

symbol "+" to any value of String type. If the text string is empty and we add to it a value,

then the result is the original value converted to string.

int a = 7;

String a_conv = "" + a;

The result is string "7".

📝 9.5.2

What is the result of the following code statements?

String a = "a";

int b = 10;

String x = a + b;

System.out.println(x);

String I.| FITPED

130

🕮 9.5.3

Conversion of string to integral number is more complicated. A method parseInt() from the

Integer package is used. The input is text and result is the corresponding numerical value:

String text = "15";

int a = Integer.parseInt(text); // conversion to number

In the case the used string does not contain numberical value, the execution ends with error

that can stop the program.

📝 9.5.4

Fill in the code so that it prints the math addition of numbers:

import java.util.Scanner;

public class App {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String a = input.nextLine();

 String b = input.nextLine();

 int x = _____._____(a);

 int y = _____._____(b);

 System.out.println(x + _____);

 }

}

🕮 9.5.5

The previous tasks showed that we can combine String and int type variables (or other

primitive data types). Evaluation of expression created by the combination of String type

variable and other variables is done based on math principles. First is evaluated the

expression in brackets, then *, / and at last +, -. In the case of operation of similar priority it

is taken from left to right.

E.g.

String I.| FITPED

131

String a = "data" + 10 + 5 * 7;

will the variable a contain value data1035.

The reason is evaluation of product and then it is taken from left to right:

 in the first step is string "data" connected with the numerical value - so the result is

string "data10"

 then is added the numerical value: "data10" + 35, where the result is the connection

of the original string with new value changed to string: "data1035"

Other approach is used in case of following code:

String a = "data" + (10 + 5 * 7);

where is firstly dealt with the product (35), then with the expression in brackets (45) and

finally follows the connection of string and numerical value ("data45").

📝 9.5.6

What will be the output of the following code?

String a = "data" + 10 + ("data" + 5 * 7);

String II.

 Chapter 10

String II.| FITPED

133

10.1 Working with strings

🕮 10.1.1

Often we need to browse the given text.

Find out how many times is the digit 3 repeated in the given string. E.g. in string

"353253593" it is 4 times.

The approach of browsing through strings is based on browsing separate characters of the

string and their processing.

In this case it means that:

 first we have to find out the number of characters of the given string (number)

 then we will go through the string using the loop from the first to the last character

 each character will be read, e.g. using the charAt() method

 we compare it with the searched character and if it is eqall we increase the number

of its occurences

 at last we print the result

The character 3 is placed in apostrophes (it a character not a string).

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int len = text.length();

int count = 0; // counts the occurences of 3, at start

its 0

for(int i = 0;i < len; i++) { // we browse through characters

 if (text.charAt(i) == '3') { // we take the character on the i-th

position and compare it with 3

 count++;

 }

}

System.out.println(count);

📝 10.1.2

Fill in the code that finds out if the string contains the character B.

String II.| FITPED

134

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int len = text._____();

boolean is_there = false;

for(int i = 0;i < len; i++) {

 if (text._____(i) == '_____') is_there = _____;

}

if (is_there)

 System.out.println("it's there");

 else

 System.out.println("it's not there");

 length

 true

 size

 char

 substring

 b

 charAt

 false

 B

🕮 10.1.3

We can solve the tasks also using the substring() method.

In this case we read the character on the i-th position to a String type variable and compare

it with the searched character using the equals() method.

Because we work with the value 3 as with a string, we place it into quotes:

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int len = text.length();

int count = 0; // counts the occurence of 3, at start it

is 0

for(int i = 0; i < len; i++) { // we browse through characters

 String digit = text.substring(i,i+1); // it takes the string on the i-

th position

 if (digit.equals("3")) { // it compares the variable digit

with the string "3"

 count++;

 }

}

System.out.println(count);

String II.| FITPED

135

Both solutions are correct and differ only in the usage of tools.

📝 10.1.4

Fill in the code that finds out how many times the string contains the character D.

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int len = text.length();

int count = 0;

for(int i = 0; i < len; i++) {

 String character = text.substring(_____,_____);

 if (character._____(_____D_____))

 count++;

}

System.out.println(count);

🕮 10.1.5

Find in the given number the maximum digit. E.g. for 784541 it will be 8.

Because of that the number of digits is in case of using (and reading) the int data type very

restricted, we will use the String type to read long numbers.

The approach will be simple:

 as the maximum digit will be chosen the smallest possible - 0,

 we will be reading the values at each position of the string (from beginning to end)

and compare it with the actual maximum value

 string (or digit) will be always converted to number and so we can find out if it is

bigger then the actual - if yes we remember it in the variable mx

Scanner input = new Scanner(System.in);

String text = input .nextLine();

String character;

int len = 0, mx = 0;

int digit;

len = text.length();

for(int i = 0;i < len; i++) {

String II.| FITPED

136

 character = text.substring(i, i + 1); // we read the string - character on

the i-th position

 digit = Integer.parseInt(character); // we convert text to number

 if (mx < digit) { // if the actual digit is bigger than the

original one

 mx = digit; // we remember it

 }

}

System.out.println(mx);

📝 10.1.6

Fill in the code to find the biggest digit in the number.

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int x = _____;

for(int i = 0;i < = text._____(); i++) {

 String character = text.substring(_____, _____);

 int digit = Integer._____(character);

 if (digit _____ x)

 x = digit;

 }

}

System.out.println(x);

🕮 10.1.7

Find out the digit sum of the given long number, e.g. for 4532187 will be the digit sum:

4+5+3+2+1+8+7 = 30.

Once again we have to:

 browse each digit of the number - we use loop to go from first to last string position

 in the loop we read the character on the i-th position (from i to i+1)

 convert it to a number

 and add it to the variable sum

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int sum = 0;

String II.| FITPED

137

for(int i = 0; i < text.length(); i++) {

 int digit = Integer.parseInt(text.substring(i,i+1));

 sum = sum + digit;

}

System.out.println(sum);

📝 10.1.8

Fill in the code that finds out the digit product of the given long number, e.g. for 4532187

will be the digit product: 4*5*3*2*1*8*7 = 6720.

Scanner input = new Scanner(System.in);

String text = input.nextLine();

int product = _____;

for(int i = 0; i < text._____(); i++) {

 _____ digit = _____.parseInt(text.substring(i,i+1));

 product = product _____ digit;

}

System.out.println(product);

 Integer

 len

 int

 0

 *

 String

 length

 1

 Int

🕮 10.1.9

Write a code that will create a mirror image of the given text, e.g.:

Mama -> amaM

winter -> retniw

etc.

String II.| FITPED

138

There are more solutions but for our need we create a variable where we input the

characters so that the next character will be put before the existing one, e.g. for the word

Aladin we will do the following:

 first we read A and save it to result (res = "A")

 then read l and save it before the result (res = "I" + res, i.e. "lA")

 read a and save it before the result (res = "a" + res, i.e. "alA") etc.

The code will be following:

Scanner input = new Scanner(System.in);

String text = input.nextLine();

String res = "";

for(int i = 0; i < text.length(); i++) {

 String character = text.substring(i,i+1);

 res = character + res; // the character is put before the created

string

}

System.out.print(res);

📝 10.1.10

Fill in the code that will print the text string backwards (in one row):

Scanner input = new Scanner(System.in);

String text = input.nextLine();

for(int i = text.length()-1; i _____ 0; i_____) {

 char character = text._____(i);

 System.out._____(character);

}

10.2 More functions

🕮 10.2.1

Working with digits of integral numbers is many times solved using maths where we obtain

digits based on integral division:

E.g. for a = 251 is valid:

String II.| FITPED

139

if we want to obtain the last digit using maths, we have to:

digit = a % 10; // remainder after the division by 10 is 1

if we want to obtain the number without the last digit then we have to divide it by 10

digit = a / 10; // result after division by 10 is 25

This solution is discutable and case specific - if you want to obtain specific digits of number

it is faster and more understandable to use the String type.

📝 10.2.2

Fill in the code so that the given number is printed backwards

Scanner input = new Scanner(System.in);

int num = input._____(); // read the integral number

while (num _____ 0) { // until the number contains any digit

 int digit = num _____ 10; // get the last digit

 System.out.print(digit); // print it

 num = num _____ 10; // remove the last digit from the number

}

🕮 10.2.3

Indentity of strings can be obtained using the equals() method. This method does not say

anything about that what string is alphabetically bigger or smaller.

To determine the lexicographic (alphabetical) comparison, the compareTo() method is

used, which uses a Unicode character table and for two variables s1 and s2 it is following:

s1.compareTo(s2);

and returns following results:

 if s1>s2, returns a positive number

 if s1<s2, retursn a negative number

 if s1==s2, returns 0

String II.| FITPED

140

The number value represents the distance of the characters on the first position that the

string differ in Unicode table, e.g.:

String s1 = "Aladin", s2 = "Jasmina";

System.out.println(s1.compareTo(s2));

returns the value -9 that represents that s1 is in alphabet before the s2 and position of first

different characters ("A" and "J") are in Unicode table between each other by 9 positions.

String s1 = "Aladin", s2 = "Amadeus";

System.out.println(s1.compareTo(s2));

returns the value -1 that represents that s1 is in alphabet before the s2 and position of first

different characters ("l" and "m") are in Unicode table between each other by 1 position.

Simillary as the equals() method is also for the compareTo() method

possible to ignore the lowercase and uppercase letters:

compareToIgnoreCase().

📝 10.2.4

What is the result of the following code?

String a = "Dingo", b = "Bingo";

System.out.println(a.compareTo(b));

🕮 10.2.5

The occurence of the substring in existing string is verified by the indexOf() method and

returns the position where the substring is placed.

String text = "Wolfgang Amadeus Mozart";

int pos = text.indexOf("ga");

The variable pos will contain the value 4 because on the 4th position was first found the

beginning of the searched substring.

In case that the searched substring is not found in the string, it returns the value -1. This can

be used to notify the user.

String text = "Wolfgang Amadeus Mozart";

String II.| FITPED

141

int pos = text.indexOf("ba");

if (pos == -1)

 System.out.println("Substring was not found.")

else

 System.out.println("Substring beginns at position " + pos + ".");

📝 10.2.6

What is the result of the following code?

String a = "Dingo", b = "ing";

System.out.println(b.indexOf(a));

🕮 10.2.7

The string can be browsed also from end using the method lastIndexOf() that returns the

last occurence of the substring:

String text = "Wolfgang Amadeus Mozart";

int pos = text.lastIndexOf("a");

It returns the position of the last occurence of character "a" that is in this case 20.

📝 10.2.8

What will be the output of the following code:

String text = "Victor Igor Hugo";

int pos = text.lastIndexOf("go");

System.out.println(pos);

🕮 10.2.9

We can also browse the string from a given position using the variation of indexOf() with

two parameters where the second one defines the position from where we have to start to

browse.

String text = "Wolfgang Amadeus Mozart";

String II.| FITPED

142

int poz = text.indexOf("a",10);

it returns 11 that is the first position of "a" from the position 10.

📝 10.2.10

What will be the output of the following code:

String text = "Wolfgang Amadeus Mozart";

int pos = text.indexOf("g",5);

System.out.println(pos);

10.3 Numbers in strings (programs)

⌨ 10.3.1 Number of digit occurrences

Write a program to find out how many times the number 3 repeats in the given string.

Input : 57,33

Output: 2

Input : OlfeK,.3fe8

Output: 1

⌨ 10.3.2 Occurrences of zero

Write the code that will find out if there is a zero in the specified string, if so, it will write

"Zero is here", otherwise "Zero is not here".

Input : 976a

Output: Zero is not here

Input : 8Ddí970d8

Output: Zero is here

String II.| FITPED

143

Input : Afé0

Output: Zero is here

⌨ 10.3.3 Digit sum

Write the code that returns the digits sum of the number you entered.

Input : 123

Output: 6

Input : 0124

Output: 7

Input : 0

Output: 0

⌨ 10.3.4 Maximum digit

Write the code that finds the maximum digit of the entered number.

Input : 5787

Output: 8

Input : 311

Output: 3

⌨ 10.3.5 Even digits in string

Write the code to find out how many even digits are in the specified string and whether

there is a zero. Print "Number of even:" count of even digits, on the console. In a new line,

if there is 0 in the string, then "Zero is here" otherwise "Zero is not here".

Input : 98

String II.| FITPED

144

Output:

Number of even: 1

Zero is not here

Input : 09a

Output:

Number of even: 1

Zero is here

⌨ 10.3.6 Number correction

Write the code that changes all non-numeric characters to 1 in the specified string and prints

the changed string to the console.

Input : 57ada87

Output: 5711187

Input : 3.,úôéáá23Â§ô!3

Output: 31111111231113

10.4 Working with text (programs)

⌨ 10.4.1 String comparison

Write the code to see if two strings specified on separate lines are identical. If they are

identical, write "yes" otherwise write "no".

Input: Mom

mom

Output: no

Input: daddy

daddy

Output: yes

String II.| FITPED

145

⌨ 10.4.2 List of vowels

Write the code that will print all the vowels (a, e, i, o, u, y) according to Slovak grammar.

Input : ahoj

Output: ao

Input : mama isla do mesta

Output: aaiaoea

⌨ 10.4.3 Uppercase

Type a program that prints all characters of the specified string to uppercase in the console.

Input : car

Output: CAR

Input : HeLlo

Output: HELLO

⌨ 10.4.4 Char in the string

Write the code that reads the string and the char character at the input to determine

whether or not the char is in the string. The result will be "Yes" or "No".

Input :

Hello

h

Output: No

Input :

Hello

H

Output: Yes

String II.| FITPED

146

Input :

John

o

Output: Yes

⌨ 10.4.5 Mirror

Write a code that will mirror the given string.

Input : john

Output: nhoj

Input : 124

Output: 421

Input : a

Output: a

⌨ 10.4.6 Occurrence and replace

Write the code to see if "y" is in the given word. If so find out how many times it is there and

replace it with "i". Print the number of occurrences on the console and print the modified

string in a new row.

Input : Byeli

Output: 1

Bieli

Input : Tree

Output: 0

Tree

String II.| FITPED

147

⌨ 10.4.7 Initials

Write the code that writes the initials for the given name and surname, for example for

Joseph Carrot print "JC".

Input :

Joseph

Carrot

Output: JC

Input :

Anna

Soul

Output: AS

⌨ 10.4.8 Delete digits

Write a code to replace the digits with dashes in the given string. Letters remain unchanged.

Input : Hello123

Output: Hello---

Input : 123

Output: ---

Input : hello 0john

Output: hello -john

⌨ 10.4.9 Remove spaces

Write the code to remove the spaces from the given string.

Input : Hello Peter

Output: HelloPeter

String II.| FITPED

148

Input : bye bye bye

Output: byebyebye

10.5 Advanced operations with text (programs)

⌨ 10.5.1 Change character with counting of changes

Write the code that changes all semicolons to commas in the given string, lists how many

times the change was made and prints the changed string. The statement will be following:

Input : abc;5325;543;55

Output: 3 abc,5325,543,55

Input : Hi;Hello;Bye

Output: 2 Hi,Hello,Bye

⌨ 10.5.2 The number of occurrences of a substring

Write the code to find out how many times the specified string is in another specified string.

The searched string (substring) is given first, the text to search in is given in a new line. The

output is the number of occurrences of the substring.

Input :

car

carpool tree car

Output: 2

Input :

Hello

Anička Hello How are you, hello

Output: 1

⌨ 10.5.3 Remove words

Write the code that removes all the words "hello" from the input string. The output is a

changed string.

String II.| FITPED

149

Input : HihelloPeter

Output: HiPeter

Input : Hellohello

Output: Hello

⌨ 10.5.4 Average Word Length

Write a code that will compute the average length of words separated by any number of

spaces read from the input. Input is the line of text. Print the average length of the words.

Input : The average length of words is 4.0

Output: 4.0

Input : Java

Output: 4.0

Input :

Output: 0.0

⌨ 10.5.5 Ones and Zeros

Write the code that will check if a given series of integer numbers contains the same number

zeroes and ones. Input integer numbers. If the read number is not equal 0 or 1 stop reading

and print true if the number of zeroes is equal to the number of ones and false otherwise.

Input : 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 99

Output: true

Input : 0 1 1 8

Output: false

⌨ 10.5.6 ZerosAndOnes II.

String II.| FITPED

150

Write a program that will check if a given string of characters contains the same number

zeroes and ones. Input string of characters.

Print "true" if the number of zeroes is equal to the number of ones and "false" otherwise.

If the string contains any other character than 0 or 1 print "error" (skip the space characters

- neither count them nor treat them as wrong characters).

Input : 00110 10000011111

Output: true

Input : 011

Output: false

⌨ 10.5.7 Decompress

Write the code that will decompress a string of characters. The compressed version of the

string consists of pairs <counter><character> separated by the comma (e.g. 5a,10b). Input

the compressed string. Print the string after decompression.

Input : 5a,10b

Output: aaaaabbbbbbbbbb

Input : 1a,2 ,33

Output: a 333

Nested Loops and Effectivity

 Chapter 11

Nested Loops and Effectivity| FITPED

152

11.1 Nested loops

🕮 11.1.1

Many tasks can be solved using one loop but it is not extraordinaty if the solution needs to

use a loop in body of another loop. The inside loop is called nested loop.

It has the following form:

for(int i = 1; i < 10; i++) {

 for(int j = 1; j < 5; j++) {

 command;

 }

}

Combination of multiple loops with known number of iterations has a small issue where you

have to take into account that the control variables have to have different names.

📝 11.1.2

How is named the loop placed inside another loop?

 nested

 internal

 subloop

 hybrid

🕮 11.1.3

Write a code that will print to the first row one character 1, to the second row two characters

2, etc. till 9.

1

22

333

4444

55555

666666

7777777

Nested Loops and Effectivity| FITPED

153

88888888

999999999

The solution of the task needs two different of loops:

 in the first loop we change the digit that will be printed.

 in the second loop we take this digit and print it and the number of outputs is similar

as the value we print.

This leads to the following loop:

for(int i = 1; i <= 9; i++) { // goes from 1 to 9

 for(int j = 1; j <= i; j++) { // this row makes it possible to repeat the

output i-times

 System.out.print(i); // this prints the value specified in the

first loop

 }

 System.out.println(); // after printing all of the digits we move

to a new row

}

📝 11.1.4

Fill in the code so that for the given n will write a rectangle of stars.

Scanner input = new Scanner(System.in);

int n = input.nextInt();

for(int i = 1; i <= _____; i++) {

 for(int j = 1; j<= _____; j++) {

 System.out._____("*");

 }

 System.out._____();

}

🕮 11.1.5

Write a code that for the given integral values m and n shows m rows below each other and

in each row will be n circles (o).

Scanner input = new Scanner(System.in);

int m = input.nextInt();

Nested Loops and Effectivity| FITPED

154

int n = input.nextInt();

for (int i = 1; i <= m; i++) {

 for (int j = 1; j <= n; j++) {

 System.out.print("o");

 }

 System.out.println();

}

The solution gives as the required result but if we look at it in more detail we see that in the

nested loop we do always the same action - we always print the same times the character

"o".

This operation can be simplified by preparing the whole row (putting it into a text variable)

and its printing - in one step we would print the whole row.

The modified code would be following:

Scanner input = new Scanner(System.in);

int m = input.nextInt();

int n = input.nextInt();

String row = "";

// we fill in the variable row with n characters

for (int i = 1; i <= n; i++) row = row + "o";

// m times we output the whole row

for (int i = 1; i <= m; i++) System.out.println(row);

The loops are independent and we can use (don't have to) similar control variable.

In the first case we do the operation in loop m x n times, in the second case n-times we

repeat the assignment to the variable and m-times the output - the resulting number of

operations is m+n.

📝 11.1.6

Fill in the code that it is the most effective to create triangles from characters "x" for the

given n.

x

xx

xxx

xxxx

xxxxx

Nested Loops and Effectivity| FITPED

155

Scanner input = new Scanner(System.in);

int n = input.nextInt();

String row = _____;

for (int i = _____; i <= n; i++) {

 row = _____ + "x";

 System.out._____(row);

}

📝 11.1.7

What will be saved in the variable sum after the following code?

int sum = 0;

for(int i = 5; i > 2; i--) {

 for (int j = 1; j <= 3; j++) {

 sum = sum + i + j;

 }

}

System.out.println(sum);

📝 11.1.8

What will be saved in the variable row after the following code?

String row = "";

for(int i = 1; i < 5; i++) {

 row = "" + i;

 for (int j = 1; j <= 3; j++) {

 riadok = row + j;

 }

}

System.out.println(row);

11.2 Simple problems (programs)

⌨ 11.2.1 Digits sequence

Type the code that writes the number 1 to the first line once, two times number 2 to the

second line, and so on up to 9, 9 nine times in the 9th row.

Nested Loops and Effectivity| FITPED

156

Output:

1

22

333

4444

55555

666666

7777777

88888888

999999999

⌨ 11.2.2 Rectangle of stars

Write the code that displays m rows for the specified integer values m and n, with n stars

in each row.

Input : 2 2

Output:

**

**

Input : 2 5

Output:

⌨ 11.2.3 Triangle of stars

Write the code that reads n from the input and displays 1 star in the first line, 2 stars in the

second line, 3 stars in the third line ..., n stars in the n-th line.

Input : 6

Output:

*

**

Nested Loops and Effectivity| FITPED

157

Input : 3

Output:

*

**

⌨ 11.2.4 Geometric sequence of stars

Write the code that reads n from the input and displays 1 star in the first line, 2 stars in the

second line, 4 stars in the third line and in each additional double of the previous star rating.

Input : 5

Output:

*

**

⌨ 11.2.5 Rectangle frame from stars

Write the code that displays m lines with n characters to create a rectangle from asterisks.

The inside of the rectangle will be empty, the asterisks will only be on the perimeter.

At the beginning of the output do a line feed. Leave one space at the beginning of the line

and between the stars.

Input : 5 5

Output:

 * * * * *

 * *

 * *

 * *

 * * * * *

⌨ 11.2.6 Opposite triangle from stars

Write the code that displays for n from the input: n-1 spaces and 1 stars in the first row, n-

2 spaces and 2 stars in the second, i-th n-i spaces and i-stars ..., n-th row 0 spaces and n

stars. At the beginning of the output do a line feed.

Nested Loops and Effectivity| FITPED

158

Input : 5

Output:

 *

 **

⌨ 11.2.7 Print to square

Write the code that reads the number n from the input and prints numbers from 1 to n * n

so that there are n numbers in each row and in each column that together square the

square.

Allocate four spaces to list the integer variable.

Input : 5

Output:

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

⌨ 11.2.8 Median of words

Write the code that will compute the median of words separated by any number of spaces

read from the input.

The median should correspond the lexical order of words. Input the line of text. Print the

median.

Input : Write a code that will compute the median

Output: median

Input : 1 3 2 5 4 7 6

Output: 4

Nested Loops and Effectivity| FITPED

159

⌨ 11.2.9 Median of word length

Write the code that will compute the median of words separated by any number of spaces

read from the input.

The median should correspond the length of words and all the words should be of different

length or if not then print error. Input the line of text. Print the median.

Input : A code computes the correct median

Output: code

Input : 1 3 2 5 4 7 6

Output: error

⌨ 11.2.10 Compression

Type the code that compresses the specified character string. Specifies the character first

and then the number of occurrences of consecutive characters.

Print the list of pairs: character and the number representing the length of the sequence of

its occurrences, separated by the colon.

Input : 122333444455555444

Output: 1:1 2:2 3:3 4:4 5:5 4:3

Input : aaaaabbbbbbb ooo

Output: a:5 b:7 :2 o:3

11.3 Advanced problems (programs)

⌨ 11.3.1 Small multiplication table

Write the code that writes a small multiplication table (from 1x1 to 10x10), allocating 4

spaces for each number.

Output:

 1 2 3 4 5 6 7 8 9 10

Nested Loops and Effectivity| FITPED

160

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

 10 20 30 40 50 60 70 80 90 100

⌨ 11.3.2 The character with the highest occurrence

Write the code that finds the character that is most common in the specified lowercase

string. If the number of occurrences is the same for all characters, print the first small

character to the console.

Input : jajaj

Output: j

Input : Hello

Output: e

Input : hello

Output: h

⌨ 11.3.3 Sum of numbers in the string

Write the code that calculates the sum of integers occurring in the string.

Input : We have 12 hens at home, 54 geese and 3 ducks.

Output: 69

Input : 12.3,8 9

Output: 32

Nested Loops and Effectivity| FITPED

161

⌨ 11.3.4 Reduction of fraction

Write the code which for the fraction entered by two values in the order of the numerator,

denominator, write its reduction form n / d.

Input : 10 8

Output: 5/4

Input : 4 12

Output: 1/3

⌨ 11.3.5 Prime numbers from 2 to n

Write a program that lists all prime numbers from 1 to n for the specified number n.

Input : 10

Output:

2

3

5

7

11.4 Repair programs (programs)

⌨ 11.4.1 Power

Repair the code to return aa for the specified value a, greater than zero.

Input : 3

Output: 27

Input : 1

Output: 1

JavaApp.java

import java.util.Scanner;

public class JavaApp {

Nested Loops and Effectivity| FITPED

162

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a, power;

 a = input.nextInt();

 power = 1;

 do {

 power = power * a;

 a = a - 1;

 } while (a > 0);

 System.out.println(power);

 }

}

⌨ 11.4.2 Stars

Repair the code to write n stars to the console.

Input : 6

Output: ******

Input : 1

Output: *

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int n = input.nextInt();

 String stars = "*";

 for(int i=1; i<=n; i++);

 stars +="*";

 System.out.println(stars);

 }

}

Nested Loops and Effectivity| FITPED

163

⌨ 11.4.3 Divisors

Repair the code to find all the divisors and their number for the specified number and write

them to the console. Print the divisors from the largest to the smallest, line feed and list

their number.

Input : 2

Output:

21

2

Input : 6

Output:

6321

4

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input.nextInt();

 int count = 0;

 int i = a;

 while (i > 0) {

 i = i - 1;

 if ((a % i) == 0) {

 count = count + 1;

 System.out.print(i);

 }

 }

 System.out.println();

 System.out.println(count);

 }

}

⌨ 11.4.4 Factorial

Repair the code to calculate the factorial for the given number n (for n <17).

Nested Loops and Effectivity| FITPED

164

Input : 5

Output: 120

Input : 4

Output: 24

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int n = input.nextInt();

 int factorial = 1;

 for(int i = n; i>=0; i--)

 factorial = factorial * i;

 System.out.println(factorial);

 }

}

⌨ 11.4.5 Power II

Repair the code to calculate the power of ab for the positive integers a, b. Use the variable

type with the largest range.

Input : 3 3

Output: 27

Input : 2 5

Output: 32

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int a = input.nextInt();

 int b = input.nextInt();

Nested Loops and Effectivity| FITPED

165

 int power = 0;

 for(int i = 1; i < b; i++)

 power = power * a;

 System.out.println(power);

 }

}

⌨ 11.4.6 Sum of digits

Repair the code to print the digits of the integer input. The program works correctly eg. for

number 2 586 but does not work for 3 108. Find the reason and secure the remedy.

Input : 12

Output: 3

Input : 2586

Output: 21

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int c, n = input.nextInt();

 int sum = 0;

 do {

 c = n % 10;

 sum = sum + c;

 n = n / 10;

 } while (c > 0);

 System.out.println(sum);

 }

}

⌨ 11.4.7 Remove spaces

Repair the code to remove spaces in the specified string.

Nested Loops and Effectivity| FITPED

166

Input : Hi Peter

Output: HiPeter

Input : bye bye bye

Output: byebyebye

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String str = input.nextLine();

 int position;

 while (str.contains(" ")) {

 position = str.indexOf(" "); // return space position

 str = str.substring(0, position)

 + str.substring(position);

 }

 System.out.println(str);

 }

}

⌨ 11.4.8 Palindrome

Repair the code to see if the palindrome string is specified. If so, write "It is palindrome" on

the console, otherwise it will write "It is not palindrome".

Input : kayak

Output: It is palindrome

Input : hello

Output: It is not palindrome

JavaApp.java

import java.util.Scanner;

public class JavaApp {

 public static void main(String[] args) {

Nested Loops and Effectivity| FITPED

167

 Scanner input = new Scanner(System.in);

 String str = input.nextLine();

 str = str.toLowerCase(); // shift to lowercase

 while (str.contains(" ")) { // if there is a space

 int position = str.indexOf(" "); // return space

 position

 str = str.substring(0,position) // remove space on

 position

 + str.substring(position+1);

 }

 String endstr = "";

 for(int i=str.length(); i<=1; i--) // go trouhgt string

 from end

 endstr = endstr + str.substring(i,i+1); // save

 if(str.equals(endstr))

 System.out.println("It is palindrome");

 else

 System.out.println("It is not palindrome");

 }

}

⌨ 11.4.9 Triangle

Repair the code to display n-1 spaces and 1 star in the first row, n-2 spaces and 2 stars in

the second row, n spaces and i stars in the i-row, 0 spaces in the n-row and an stars.

Input : 5

Output:

 *

 **

JavaApp.java

import java.util.Scanner;

Nested Loops and Effectivity| FITPED

168

public class JavaApp {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int n = input.nextInt();

 String row = "";

 for(int i = 1; i <= n; i++) { // the cycle provides

 a print

of n rows

 for(int j = 1; j <= n; j++) // the cycle fills the

 row with stars

or spaces

 if(j <= (n-i))

 row = row + -*-;

 else

 row = row + - -;

 System.out.println(row); // insert created row

 }

 }

}

⌨ 11.4.10 Mirror

Repair the code so that it will mirror the specified string.

Input : john

Output: nhoj

Input : 124

Output: 421

Input : a

Output: a

JavaApp.java

import java.util.Scanner;

public class JavaApp {

Nested Loops and Effectivity| FITPED

169

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 String str = input.nextLine();

 String mirror = " "; // insert an empty string =

 nothing into

the variable

 for(int i = 1; i<= str.length()-1; i++)

 mirror = mirror + str.charAt(i); // i-th character read

 before

 System.out.println(mirror);

 }

}

Multiple Conditionals

 Chapter 12

Multiple Conditionals| FITPED

171

12.1 Command switch

🕮 12.1.1

By standard is by conditionals used the if structure that by one usage allows us to difference

maximum 2 situations (if - else).

But in practice is sometimes used structure that allows muliple conditionals (branches) and

allows to define different behavior of the program for the list of values.

It has the following structure:

switch (variable) {

 case 1: command1;

 command2;

 break;

 case 2: command1;

 command2;

 break;...

 default: command1;

 command2;

 break;...

}

For each possibility is using the case command defined a label that is searched by the

control structure based on the content of the variable defined in the switch part.

A special status has the default label that contains commands that are executed when none

of the above cases occur.

Switch controls the value of the variable and compares it with the values placed after the

case. If the value after case and the value of the variable are equal then it starts to execute

the commands. The case commands do not add another block or command but only help

to find a place where the switch has to start working based on the content of the variable.

📝 12.1.2

What statements are used to represent the label?

 case

Multiple Conditionals| FITPED

172

 default

 switch

 break

 else

🕮 12.1.3

Write the structure of the multiple conditionals that evaluates the test based on the

achieved points. Print for

 10 points – „excelent“

 9 points – „good job“

 8 points – „study more“

 less points – „weak“.

Scanner input = new Scanner(System.in);

String points = input.nextInt();

switch(points) {

 case 10: System.out.println("Excelent!");

 break;

 case 9 : System.out.println("Good job!“);

 break;

 case 8 : System.out.println("Study more!");

 break;

 default: System.out.println("Weak...");

}

In the case that the variable points has another value as the named (10, 9, 8), then are

executed the commands in the default part.

The break command has the task to ensure that it jumps out of the switch structure and

continue with the code placed after the switch block.

Without the break commands would the execution continue through another commands

till the end of the switch.

switch(points) {

 case 10: System.out.println("Excelent!");

 case 9 : System.out.println("Good job!“);

 case 8 : System.out.println("Study more!");

Multiple Conditionals| FITPED

173

 default: System.out.println("Weak...");

}

In our case it would mean e.g. for the 9 points student:

 setting on the case 9

 printing „Good job!“

 printing "Study more!"

 printing "Weak..."

📝 12.1.4

What is the output of the following code?

 int op = 3;

 int res = 5;

 switch (op) {

 case 1: res++;

 break;

 case 2: res--;

 case 3: res = res + 2;

 case 4: res = res + 3;

 break;

 case 5: res = res - 2;

 case 6: res = res - 3;

 break;

 default: res = res + 4;

 }

 System.out.println(res);

🕮 12.1.5

For the month number write the number of its days. Do not take into account

the leap year.

To do the same commands for more values of the vairable we structure the switch

following:

switch (variable) {

 case value1:

 case value2:

 case value3:

 case value4: command1;

Multiple Conditionals| FITPED

174

 break;

 case value5:

 case value6: command2;

 break;

 default: command3;

 break;

}

The last break command is not neccessary because the switch will end either way at that

point. However we recommend to use the break statement to prevent an error that can be

created by following code edition.

The solution of the assignment will be following:

int month = 2;

switch (month) {

 case 1:

 case 3:

 case 5:

 case 7:

 case 8:

 case 10:

 case 12: System.out.println("31");

 break;

 case 4:

 case 6:

 case 9:

 case 11: System.out.println("30");

 break;

 case 2: System.out.println("28");

 break;

 default: System.out.println("Wrong input month.");

 break;

}

📝 12.1.6

Fill in the code so that it does corresponding operation with the variables a and b based on

the given operator.

Scanner input = new Scanner(System.in);

String operator = input.nextLine();

int a = 10, b = 3;

_____ (operator) {

 _____ "+" : System.out.println(a + b);

 break;

Multiple Conditionals| FITPED

175

 _____ "-" : System.out.println(a - b);

 break;

 _____ "*" : System.out.println(a * b);

 break;

 _____ "%" : System.out.println(a % b);

 break;

 _____ : System.out.println("undefined operation");

 break;

}

🕮 12.1.7

The break statement will stop the execution of commands inside of the following

structures:

 switch

 for

 while

 do-while

After its execution is continued with the command placed after the stopped structure.

We do not recommend to substitute the loop condition and "force" the loop to end this way,

however it is a good option in case of reading foreign source codes.

E.g.:

Does the text string contain a given character?

In this task it's enough to find the first occurence of the character and end with the search.

If the character is found we set the boolean variable to true and the command break will

interrupt the for loop and skip after the loop end to print the output at the end of the

program.

If the searched character is not found the loop will come to an end and the variable will stay

with the value false.

char search = 'a';

String txt = "Mama has Ema";

boolean found = false;

Multiple Conditionals| FITPED

176

for (int i = 0; i < txt.length(); i++) {

 if (txt.charAt(i) == search) { // if the searched character is on the

given position

 found = true;

 break;

 }

}

if (found) {

 System.out.println("It is on position "+i);

} else {

 System.out.println("Not found");

}

📝 12.1.8

What is the output of the following code?

for(int i = 1; i < 10; i++) {

 if (i == 4)

 break;

 else

 System.out.print(i);

}

🕮 12.1.9

While the break command interrupts the loop execution, the continue statement ends

the loop execution only in the one step - the loops continues (evaluates the loop condition

and increases the value of the control variable if it is the loop with known number of

iterations).

E.g.

for(int i = 1; i <= 5; i++) {

 if (i == 4)

 continue;

 else

 System.out.print(i);

}

The part of the program will print values 1, 2, 3.

Multiple Conditionals| FITPED

177

In case the variable i has value 4, by the command continue will move to the next iteration

of the loop, increase the value to 5 and continue.

The result will be 1235.

📝 12.1.10

What will be the output of the following code?

int i = 0;

while (i < 10) {

 i++;

 if (i % 2 == 0) continue;

 System.out.println(i);

}

12.2 Switch (programs)

⌨ 12.2.1 Number of even digits

Write the code that prints the number of occurrences of each even number (0-9) for the

given number.

Input : 123

Output: 0-0 2-1 4-0 6-0 8-0

Input : 12312346

Output: 0-0 2-2 4-1 6-1 8-0

⌨ 12.2.2 Number of days per month (numeric input)

Write the code that prints count of days representing the given month's numeric designation

(do not assume a leap year).

For a wrong input, greater than 12 or less than 1, the program will display "Invalid month".

Input : 1

Multiple Conditionals| FITPED

178

Output: 31

Input : 0

Output: Invalid month

⌨ 12.2.3 Count of days in month (Verbal Input)

Write the code that prints the number of days in a month. The month is given in lowercase

letters.

Input : january

Output: 31

Input : february

Output: 28

⌨ 12.2.4 Calculator

Write the code that finds the sum, difference, product and division of the two given numbers

based on the given mathematical operation (+, -, *, /).

Use the integer division command for quotient and enter the mathematical operation

character in the order and the next line of the two numbers.

Input :

+

1 2

Output: 3

Input :

/

6 3

Output: 2

Multiple Conditionals| FITPED

179

⌨ 12.2.5 Seasons

Write the code that retrieves the number of the given month and prints which season the

month belongs to:

 3 - 5 months: "SPRING"

 6 - 8 months: "SUMMER"

 9 - 11 month: "FALL"

 12, 1, 2 month: "WINTER"

If the input number is less than 1 or greater than 12, "Invalid month" is displayed on the

console.

Input : 2

Output: WINTER

Input : 7

Output: SUMMER

⌨ 12.2.6 The number of days left in a month

Write a program that reads two integers representing the day and month at the input, and

prints the number of days left in that month.

Input : 2 2

Output: 26

Input : 1 1

Output: 30

⌨ 12.2.7 Age categories

Write the code that reads a number representing the age of a person at input and prints

whether it is the age for a child (0-11 years), a teeneger (12-18 years), a young adult (19-35

years), a adult (36 - 60 years) or an senior (61 years or older).

Input : 9

Multiple Conditionals| FITPED

180

Output: child

Input : 89

Output: senior

⌨ 12.2.8 Hex Digits

Write the code that will translate hexadecimal digits (lower and uppercase) entered on input

to its decimal values.

The input contains an character. If it is the hexadecimal digit print its decimal value else print

"-1".

Input : A

Output: 10

Input : x

Output: -1

Input : b

Output: 11

⌨ 12.2.9 Print Vowels

Write the code that prints only the vowels (a, e, i, y, o, u, small and large) of the given input

word using the case structure.

Input : Hello Oto

Output: eoOo

Input : Bye johnny

Output: yeoy

https://courses.fitped.eu/mod/quiz/view.php?id=3305

Multiple Conditionals| FITPED

181

⌨ 12.2.10 Prints without vowels

Write the code that removes the vowels (a, e, i, y, o, u, uppercase and lowercase) from the

given word.

Input : hello

Output: hll

Input : mAmA

Output: mm

Input : mother go to the restaurant

Output: mthrgtthrstrnt

⌨ 12.2.11 Lowercase and uppercase

Write the code to find out how many times there are lowercase letters, how many uppercase

letters and how many digits are in the input string.

Input : hello123A

Output: lowercase-5 uppercase-1 digit-3

Input : Hello Peter

Output: lowercase-8 uppercase-2 digit-0

Exceptions

 Chapter 13

Exceptions| FITPED

183

13.1 Exceptions and the treatment

🕮 13.1.1

In the case of error will the execution of program be put into an expectional status

(exception) and the program execution will be interupted.

Because Java is a language that is focused on security, it forces the user to treat all situations

where an error can occur that would lead to the program crash. Based on the severity of the

errors, the programer:

 can treat some exceptional states (division by zero, conversion of string to number)

 has to treat the other (input-output)

📝 13.1.2

The errors in program are in Java language denoted as:

 exceptions

 errors

 mistakes

🕮 13.1.3

The errors can be many times predicted:

int a = 1, b = 0;

if (b == 0)

 System.out.println("no division");

else

 System.out.println("division: " + a / b);

We will check if the b variable contains value that would lead to the program crash, if yes

we do not allow the dangerous operation.

Exceptions| FITPED

184

📝 13.1.4

Fill in the correct value where in this case it is neccessary to prevent the conversion of text

to number if it contains other characters than 0-9.

Scanner input = new Scanner(System.in);

String txt = input.nextLine();

isNum = _____;

for(int i = 0; i < txt.length(); i++) {

 if ((txt.charAt(i) < _____) || (txt.charAt(i) > _____)) {

 isNum = false;

 break;

 }

}

if (_____) {

 num = Integer.parseInt(txt);

} else {

 System.out.println("not integral number")

 num = 0;

}

🕮 13.1.5

The alternative to check the dangerous inputs into methods is to catch the error because if

it happens = treatment of program crash.

This exceptional situation (exception) is treated by the block try – catch – finally

 try – begins the commands block where can the error happen

 catch (catch the error) – ends the commands block and also notes what has to be

done if the error occurs (e.g. output info)

 finally – code that should be executed if the exception occurs and also if not (e.g.

releasing the memory), this code block is optional

try {

 // commands that can cause an error

}

 // it can happen that the treated code can generate various

 // exceptions on different places, so to various errors we can react

different

catch (exceptionType1 variable1) {

 // in the case the exception of type 1 is generated,

Exceptions| FITPED

185

 // you put here the commands that have to be executed

}

catch (exceptionType2 variable2) {

 // the commands executed for the exception of type 2

}

finally {

 // commands that will be executed always

}

E.g. catching the exception of division by zero will be following:

int a = 1, b = 0;

try {

 int c = a / b;

 System.out.println(c);

} catch (ArithmeticException e) {

 System.out.println("division by zero");

}

In the case that by the division occurs an error,

 int c = a / b;

will be the program interupted and continue in the catch part that is defined for the

treatment of the division by zero (i.e. the output of the c variable will not be done).

📝 13.1.6

Fill in the code to catch the error by the conversion of text to number:

int i;

Scanner input = new Scanner(System.in);

_____ s = input.nextLine();

_____ {

 i = _____.parseInt(s);

} _____ (NumberFormatException e) {

 System.out.println("String is not a number!");

}

 String

 Integer

 catch

 try

Exceptions| FITPED

186

🕮 13.1.7

The information about the error occurance in the catch part will be saved to the e variable

and we can print it out then:

int a = 1, b = 0;

try {

 int c = a / b;

 System.out.println(c);

} catch (ArithmeticException e) {

 System.out.println(e);

}

In this case contains the e variable the text

java.lang.ArithmeticException: / by zero

that can be enough for the user or not. It is on the programer if he/she uses the system

message or writes his/her own.

The alternative to print all of the content of the variable is showing the message that

contains the text without the notation of the error:

System.out.println(e.getMessage());

prints:

/ by zero

📝 13.1.8

Fill in the output of the error text that catches the following exception treatment:

_____ {

 c = a / b;

}

_____ (ArithmeticException _____) {

 System.out.println(exc);

}

Exceptions| FITPED

187

🕮 13.1.9

One try block is used to treat more types of errors by its enumeration into seperate catch

blocks following way:

try {

 ...

 i = Integer.parseInt(s1);

 j = Integer.parseInt(s2);

 division = i / j;

 }

 catch(NumberFormatException e) {

 System.out.println("String is not a number!");

 }

 catch(ArithmeticException e) {

 System.out.println("Division by zero!");

 }

If the error occurs during the conversion of text to number it continues in the

NumberFormatException part, if an error is raised by the division by zero it continues in

the ArithmeticException part.

Exception types that can occur during the program execution can be found in the

Exceptions class specification.

📝 13.1.10

Fill in the correct error types:

try {

 i = Integer.parseInt(s1);

 j = Integer.parseInt(s2);

 division = i / j;

 }

 catch(_____ e) {

 System.out.println("String is not a number!");

 }

 catch(_____ e) {

 System.out.println("Division by zero!");

 }

 ZeroDivisionException

 NumberFormatException

 NumberAsStringException

Exceptions| FITPED

188

 ArithmeticException

🕮 13.1.11

If we are not sure what errors can occur, it is enough to use a similar code to treat all errors,

so we can use the Exception type to catch all errors following:

int a = 1, b = 0, c = 0;

String str = "102a";

try {

 b = Integer.parseInt(str);

 c = a / b;

 System.out.println(c);

}

catch (Exception e) {

 System.out.println(e.getMessage());

}

The catch block in this case catches all types of errors and reacts to all of them similar -

prints the error text.

📝 13.1.12

Fill in the code to catch any type of error by input of the data:

Scanner input = new Scanner(System.in);

_____ {

 int i = input.nextInt();

 int j = input.nextInt();

 System.out.println(„division is “+i / j)

} _____ (_____ e) {

 System.out.println("An error occured: " + e.get_____());

}

Exceptions| FITPED

189

13.2 Exceptions (programs)

⌨ 13.2.1 Enter numeric value correctly

Write the code that detects if an integer value was entered correctly by catching an

exception. In the case of correct value the text "OK" is displayed on the console, in the case

of incorrect value the text "Exception" is displayed.

Input : -268

Output: OK

Input : i am 5

Output: Exception

⌨ 13.2.2 Zero division error handling

Write the code that is resistant to zero by dividing two integers entered at the input.

Error catch with a try - catch block when dividing.

If it is not a division by zero, it will print the result as a decimal number on the console

otherwise it will write "Division by zero"

Input : 1 2

Output: 0.5

Input : 105 0

Output: Division by zero

Input : 5 1

Output: 5.0

Exceptions| FITPED

190

⌨ 13.2.3 Error resistant addition

Write the code that is resistant to incorrect values. At the input are given two integers to be

added together. Each number is given in a separate line.

If the entry is incorrect print to the console whether the first or second number is incorrect,

in the form: "1st number is incorrect" / "2nd number is incorrect".

Input : 1

2

Output: 3

Input : j

5

Output: 1st number is incorrect

Input : cislo

cislo

Output: 1st number is incorrect

Input : 5

cislo

Output: 2nd number is incorrect

⌨ 13.2.4 Printing positions with error

Write the code to see if the given integer is spelled correctly. In the case of an incorrect

input, write to the console the position of the error. If the number is entered correctly, it

will display "OK".

Input : -1

Output: OK

Input : -1j00

Output: error at position 2

Exceptions| FITPED

191

Input : 568-1

Output: error at position 3

Input : 5045

Output: OK

Arrays

 Chapter 14

Arrays| FITPED

193

14.1 Basic terms

🕮 14.1.1

Working with data is often not only simple calculation. More than 90 % application do not

work with simple data but with lists. The example of lists are: people, invoices, websites,

meassured values, etc.

We request that we can do the following operations with lists, adding and deleting data,

various calculations, sorting, etc.

The most simple list that we have already worked with is String - it contained the list of

characters ordered into a string that allows reading, adding, deleting, etc.

The access to specific characters of the list was secured through index:

📝 14.1.2

Fill in the command to get the 4. character of the string:

String str = "Joseph Balsamo";

char res = str._____(_____);

🕮 14.1.3

To create lists of data of the same type is used the data type array.

The access to each element is done using index where the first value is saved at position 0.

If we want to use the field in program, we need to declare it:

int[] arr1;

or

Arrays| FITPED

194

int arr2[];

Both notations are similar, important is to use [], that defines that it is a list of values defined

at the beginning of the notation - in this case it is a list of integral numbers.

Alternatively we can define the list of decimal numbers:

double arr3[];

or strings:

String[] strs;

📝 14.1.4

Declare a boolean type field:

boolean_____ arr;

or

boolean arr_____;

🕮 14.1.5

Declaration:

int[] arr;

defines the reference to the field but we have not reserved any memory for it yet.

The following operation creates the space in the memory for 100 elements:

arr = new int[100];

The memory is reserved using the command new.

The number of elements that we want to reserve the memory for, is defined in square

brackets.

The capacity that is reserved corresponds to the number of elements and the data type of

the field.

Arrays| FITPED

195

To simplify and increase the code clarity we can create and reserve the space for the field in

one row using the following command:

int arr[] = new int[50];

📝 14.1.6

Fill in the code so that you declare and reserve space for a field of 25 real numbers:

double_____ arr_double = _____ double[_____]

🕮 14.1.7

The field begins from the zero index and the last element has the index

numberOfElements - 1:

The number of elements in the field can not be after the reservation changed anymore.

The information about the count of the elements is get using the command:

numberOfElements = myField.length;

where length is the characteristics of the field, not a method, that is the reason why we use

it in the field without the brackets.

📝 14.1.8

What is the index of the first element of the field?

📝 14.1.9

Fill in the command that returns the count of elements of the field:

Arrays| FITPED

196

...

int size = arr._____;

System.out.println("The number of elements of the field is: " + size);

🕮 14.1.10

After the creation are in the int type field set all elements to the value 0 (zero).

During the execution of the program can be the value of the element changed following

way:

myField[3] = 7;

Reading the value from field is similar as reading the values of variables, e.g.:

sum = sum + myField[3];

if (myField[0] == 4)

📝 14.1.11

Fill in the following code so that you declare a field of 10 integral numbers and print the

difference of the first and last element.

_____ arr = new int[_____];

int c = arr[_____] – arr[arr._____ - _____];

System.out.println(c);

 9

 int

 int()

 int[]

 11

 1

 int[10]

 length

 0

 lenght()

 10

Arrays| FITPED

197

🕮 14.1.12

The field values can be filled right at the creation (and this way specify how many elements

will the field have):

int[] arr = {2, 8, 15, 22, 34}; // field with 5 elements

The size of the field is defined by the number of initial values and this way more information

is not needed for memory reservation.

If the inital values are put then the values of all elements must be mentioned.

To set values of only some elements it is neccessary to use the asignment commands in

code.

📝 14.1.13

Fill in the code so that in the field arr are saved values 2, 4, 6, 8, 10.

_____ arr =_____2, 4, 6, 22, 10_____;

arr[_____] = 8;

14.2 Reading data into array

🕮 14.2.1

Operations that we do over the fields usually require to process each element. The transition

is done using a loop from the first element to the last contained at the position arr.length-

1.

The output can be done following:

int[] arr = new int[10];

...

for(int i = 0; i < arr.length; i++) {

 System.out.println(arr[i]);

}

Arrays| FITPED

198

📝 14.2.2

Fill in the code so that the value of each element is increased by 2:

int[] arr = new _____[10];

...

for(int i = 0; i < arr._____; i++) {

 arr[_____] = arr[_____] + 2;

}

📝 14.2.3

Fill in the code so that the value of the element is the same as its index in the field:

int[] arr = new _____[10];

for(int i = _____; i < arr._____; i++) {

 arr[i] = _____;

}

🕮 14.2.4

The field elements are usually not availible at the program creation but we need to obtain

them from the user. In that case we create the field and input the elements in a loop:

Scanner input = new Scanner(System.in);

int[] arr = new int[10];

for(int i = 0; i < 5; i++) {

 arr[i] = input.nextInt();

}

...

📝 14.2.5

Fill in the source code that declares a String type field of 5 elements that are read from the

input.

Scanner input = new Scanner(System.{1:SA:=in});

_____[] arr = new _____[5];

for(int i = 0; i < arr._____; i++) {

 arr[i] = input._____();

}

Arrays| FITPED

199

 length

 nextInt

 nextLine

 String

 String

 length()

 int

 int

🕮 14.2.6

The number of elements we have to work in the program does not have to be always defined

in the program.

We can obtain it from the user input, reserve the neccessary space and each element read

similarly as in the previous case.

Scanner input = new Scanner(System.in);

int count = input.nextInt();

int[] arr = new int[count]; // reserve the space

for(int i = 0; i < count; i++) {

 arr[i] = input.nextInt();

}

...

📝 14.2.7

Fill in the code that will create a field of given number of elements and read each element

into the field and finds out the sum of the given numbers:

Scanner input = new Scanner(System.in);

// find out the number of elements

int n = input._____();

int arr_____ = new int[_____];

// read elements

for(int i = 0; i < n; i++) {

 arr[_____] = input.nextInt();

}

// find out the sum

int sum = 0;

for(int i = 0; i < n; i++) {

Arrays| FITPED

200

 sum = _____ + arr[_____];

}

System.out.println("Sum of the numbers is: " + sum);

🕮 14.2.8

In the situation where we do not know the number of field elements even after the program

execution it is neccessary to create a field with a large number of elements and remember

how many of them have a value.

E.g.:

Write a program that will read the elements till the input will not be the value 0.

After that output the elements in a reverse order. Assume that the maximum

number of elements on the input is 100.

Scanner input = new Scanner(System.in);

int[] arr = new int[100]; // reserve the space for maximum number of elements

int count = 0; // counter of elements

// in loop we will read the elements till there will not be 0 or we do not

reach 100 elements, that is the maximum size of the field

while (count<100) {

 int num = input.nextInt();

 if (num == 0) break; // if the input is 0, we terminate the read

 arr[count] = num; // assign the given value to the field

 count++; // and increase the number of elements in the

field

}

// loops ends if the input was 0 or if the count was more than the maximum

elements in the field

for(int i = count – 1; i >= 0; i--)

 System.out.println(arr[i]);

📝 14.2.9

Fill in the code that will read the values into the field and add them till on the input is not -

1.

Scanner input = new Scanner(System.in);

int[] arr = new int[100];

int count = 0, sum = 0;

do {

Arrays| FITPED

201

 int num = _____.nextInt();

 if (num == _____) _____;

 arr[_____] = num;

 count_____;

 sum _____= num;

} while (count<100);

System.out.println(sum);

14.3 Constants and random numbers

🕮 14.3.1

Value to reserve the size of the field was in previous tasks used always on different places

(by field definition, by evaluation if the given count was not exceeded, etc.)

If we want to change this value in the future, we would have to change it on all places what

is in case of long programs pretty complicated.

For this reason would be great to remember this value in a separate variable and instead of

integral value use a variable. If we would need to change the number of processed elements

we would need to change the value only on one place. Everywhere else would be used

already the updated value.

In addition if we want to prevent accidental rewrite of the variable we can define it as a

constant or final variable.

This kind of variable can obtain during the program only one value - constant,

unchangeable.

If we once initialize the variable to some value and note it as constat through the keyword

final, then its the value of the variable unchangeable:

final int count = 10;

Constant can be at first only declared and then assign it a value - however only once.

📝 14.3.2

What keyword is used to defined the variable as a constant?

Arrays| FITPED

202

🕮 14.3.3

The random number is an useful mean to test program or implementing an element of

randomness into programs.

To get a random number you can use the method

Math.random()

that returns real (decimal) valut from interval <0,1) – the range contains the value 0.0 but

not the value 1.0, in other words:

0.0 <= Math.random() < 1.0.

If we want to obtain bigger values it is neccessary to multiply the obtained value with the

maximum value of our request, e.g.

Math.random() * 10

returns the value from range

0.0 – 9.99999999999

📝 14.3.4

Fill in the code so that you generate a value from 0 - 20 (except 20) into the variable a.

double b = Math._____() * _____;

🕮 14.3.5

If we do not want to generate decimal but integral numbers, we need tu retype.

Notation:

int num = (int)(Math.random() * 9);

will input into integral variable the value from 0-8

Arrays| FITPED

203

📝 14.3.6

Fill in the code so that you put a integral value from 0 - 15 (included) into a variable.

int num = _____(_____.random() * _____);

 16

 Math

 15

 round

 (int)

 System

📝 14.3.7

Fill in the code so that you put a value from range 50-150 (included) into a integral variable:

int num = _____(_____ + _____.random() * _____)));

🕮 14.3.8

Even in the case the range is in negative numbers we choose the same approach:

 idetify the minimal required value

 we add the random value multiplied by the range interval (eventually we add 1 for

integral numbers)

E.g. generate random value from range -20 to 30.

 minimal value is -20 and the interval range is 50

The notation will be following:

int c = (int)(-20 + Math.random() * 51);

Arrays| FITPED

204

📝 14.3.9

Fill in the code so that you put a value from range -20 to 20 (included) into a integral variable.

int num = _____(_____ + _____.random() * _____)));

🕮 14.3.10

The random number generator is usefull by inputing the field of random values.

Make sure that the 10 element field was filled with random integral values from the range

of -50 to 50.

We use the knowledge of using constants and define the range of the field using a constant.

Then we create the notation for generation of random numbers (minimum value is -50, the

interval range is 100, i.e. 101) and then we print the field.

final int count = 10;

int[] arr = new int[count];

for(int i = 0; i < count; i++)

 arr[i] = (int) (-50 + Math.random() * 101));

for(int i = 0; i < count; i++)

 System.out.println(arr[i]);

📝 14.3.11

Fill in the code so that it saves into a field 20 random values from the range -50 to 35

included.

_____ int count = 20; // constant

int[] arr = new int[_____];

for(int i = 0; i < count; i++) _____

 arr[i] = (int) (_____ + _____.random() * _____));

 System.out.println(arr[i]);

Arrays| FITPED

205

14.4 Random numbers (programs)

⌨ 14.4.1 Random number from 0 to 100

Write the code that will generate and print a random integer from the <0,100> interval to

the console. For example:

Output: 42

⌨ 14.4.2 Random number from -50 to 50

Generate and print a random number from interval <-50,50>.

Output (Eg.): -5

⌨ 14.4.3 Random number from given interval

Generate and print a random number for a given interval of two integer numbers. The

interval numbers do not have to be given in order smaller, higher.

Input : 20 80

Output (Eg.): 61

Input : 22 -68

Output (Eg.): -3

14.5 Simple arrays (programs)

⌨ 14.5.1 The largest element in the field

Write the code that prints the largest value of the given array. At the input is the first given

the number of field elements (space) each field element separated by a space.

Input : 5 4 8 12 21 7

Output: 21

Arrays| FITPED

206

⌨ 14.5.2 Smallest array element index

Write the code that prints the first index of the smallest array element of the integer field

given on the input. At the input, first is given the number of array elements (space), each

array element is separated by a space.

Input : 5 4 -8 12 21 7

Output: 1

⌨ 14.5.3 The number of occurrences in the field

Write a program that prints the number of occurrences of a given value in the given integer

array. At the input, first is given the number of array elements (space) individual array

elements separated by a space, (space) the searched value. Eg.:

Input : 6 4 -8 12 21 7 4 4

Output: 2

⌨ 14.5.4 The number of positive and negative values

Write the code that prints the number of positive and negative values in the array for a given

integer array specified at the input (zeroes are not counted). At the input, first is given the

number of array elements (space) each array element separated by a space. The console will

display the number of positive "positive:" and the number of negative "negative:" numbers

in separate lines. Eg.

Input : 6 4 -8 0 12 -21 7

Output:

positive: 3

negative: 2

⌨ 14.5.5 Divisible numbers

Write the code that prints all the array elements divisible by a given value for the given

integer array. At the input, first is given the number of array elements (space), individual

array elements separated by a space (space) divisor.

Arrays| FITPED

207

Comma-separated elements are printed to the console, followed by a dot after the last

value. If there are no divisible numbers in the array, the console displays the text: "No

element divisible by the specified value".

Input : 6 24 -8 -12 21 7 4 4

Output: 24,-8,-12,4.

Input : 6 24 -8 -12 21 7 4 11

Output: No element divisible by the specified value

⌨ 14.5.6 Difference between largest and smallest element

Write the code that prints the difference between the largest and smallest array element

for a given integer array given at the input. At the input, first is given the number of array

elements (space), each array element separated by a space.

Input : 5 4 8 12 21 7

Output: 17

⌨ 14.5.7 The first and second largest number

Write the code that prints the value of the largest and second largest element for the given

integer array from the input. At the input, first is given the number of array elements (space),

each array element separated by a space. The console will display the largest and second

largest value of the array, separated by a comma.

Input : 5 4 8 12 21 7

Output: 21,12

⌨ 14.5.8 Number of above and below average elements

Write the code that prints the number of above-average and below-average elements in the

array for the integer array specified in the input. The average value does not count. At the

input, first is given the number of array elements (space), each array element separated by

a space. The number of above-average "above:" and below-average "below:" elements, in

separate rows, are displayed on the console.

Arrays| FITPED

208

Input : 6 4 -8 0 12 -21 7

Output:

above: 4

below: 2

⌨ 14.5.9 Occurrence of divisible numbers

Write the code that finds the number of array elements that are divisible by 8 in a given

integer array of 10 elements specified at the input. The array elements are given one at a

time, always in a new line.

Input :

10

24

21

41

40

31

77

80

4

3

Output: 3

Input :

1

2

1

1

4

1

1

1

1

6

Output: 0

Arrays| FITPED

209

14.6 Fieldless List (programs)

⌨ 14.6.1 MinMax

Write the code that calculates the minimum and maximum values of a series of integers. Do

not use the array of integer. Enter the number of elements to enter, separated by a space.

Output the minimum and maximum values.

Input : 10 8 4 -5 33 22 56 45 -32 0 23

Output: -32 56

Input : 5 3 -3 0 -5 -33

Output: -33 3

⌨ 14.6.2 Mean

Write the code that calculates the arithmetic and geometric mean values of a given series

of positive integers. Do not use an integer field. At the input, enter the number of elements

(space) each element separated by a space. At the output, write the mean values separated

by a space and rounded to integers.

Input : 5 1 1 1 1 1

Output: 1 1

Input : 8 1 3 5 7 9 11 13 15

Output: 8 6

⌨ 14.6.3 Median

Write a code that will compute the median of integer numbers read from the input to the

1-dimensional array. The numbers should be of different values – if not then print “error”.

Input the number of array’s elements and then these elements (integer numbers). Print the

median.

Input : 6 2 5 33 7 1 -1

Output: 2

Arrays| FITPED

210

Input : 7 11 66 55 44 33 22 11

Output: Error

Input : 1 1

Output: 1

Array Processing

 Chapter 15

Array Processing| FITPED

212

15.1 Field operations

🕮 15.1.1

The most simple operation above the field is its browsing and finding out if it contains some

value or how many times it is contained in the field.

Generate random values to a 10 element field from the range -10 to 10 and find out how

many times it contains the value 1.

final int count = 10;

int[] arr = new int[count];

for(int i = 0; i < count; i++)

 arr[i] = (int) (-10 + Math.random() * 21));

int occurences = 0;

for(int i = 0; i < count; i++)

 if (arr[i] == 1) occurences++; // if the i-th element contains 1

increase the occurences

The counting can be done also inside the loop that generates the random values.

📝 15.1.2

Find out if the field defined by the user using the element naming is included a given name.

Scanner input = new Scanner(System.in);

String str = input.nextLine();

String[] arr = _____"Ewa","Anna","Jan","Eva","Jan", "Jose", "George"_____;

int i = 0;

boolean contains = _____;

while (i < arr._____) {

 if (arr[i]._____(str)) {

 contains = _____;

 _____;

 }

 i++;

}

if (contains)

 System.out.println(str + "is contained in the list.");

else

 System.out.println(str + "is not contained in the list.");

 compare

 length()

Array Processing| FITPED

213

 false

 continue

 true

 exit

 true

 break

 length

 {

 (

)

 equals

 }

🕮 15.1.3

Find the maximum in a field of 20 random integral numbers that are generated from range

0 to 100.

Generating the field is for us already routine. Finding the maximum value was solved already

in browsing a string. We will solve the task in fields the same way where we will browse the

field of integral numbers from the 0. position till the last and if we find the value that is

bigger than the actual maximum we assign it as a new maximum.

// at the beginning can be the first value taken as the maximum

int max = arr[0];

// we will browse the list from first (the following element) till the last

element

for(int i = 1; i < arr.length; i++) {

 // if the value of the i-th element is bigger than max

 if (arr[i] > max)

 max = arr[i]; // then is arr[i] the new maximum

}

System.out.println(max); // output

Array Processing| FITPED

214

📝 15.1.4

Fill in the code that reads given number of elements into the field and finds the maximal

value.

Scanner input = new Scanner(System.in);

_____ int count = input.nextInt(); // read as a constant

int arr_____ = new _____[_____];

arr[0] = input.nextInt(); // read the first value of the field

int max = _____; // remember the first value of the field

for(int i = _____; i < count; _____) {

 arr[i] = input.nextInt();

 if (max _____ arr[_____])

 max = arr[_____];

}

System.out.println("Maximum is "+ _____);

🕮 15.1.5

Find out the average of the read integral values in field ended with 0. Do not

count the zero into the average.

List that is read does not have to be always saved into a field. To process the data can be

used one read and we never again need to return to them.

The average is calculated as the sum of all given elements divided by its count. E.g. for 1, 3,

5, 11 it will be

(1 + 3 + 5 + 11) / 4 = 20 / 4 = 5

In this case it's enough to read each value once and add it to a common sum and then divide

it with the count of elements.

Scanner input = new Scanner(System.in);

int sum = 0;

int count = 0;

do {

 int a = input.nextInt();

 if (a == 0) break; // if the read value is 0, we jump out of the loop

 sum += a;

 count++;

} while (true); // because we jump out of the loop using another way,

we can let it run till infinity

double avg = sum / count;

Array Processing| FITPED

215

System.out.println("Average is "+ avg);

📝 15.1.6

Find the maximum in a list of integral numbers which count is given as the first value on the

input.

Scanner input = new Scanner(System.in);

int count = input.nextInt();

_____ max = input.nextInt();

for(int i = _____; i < count; i++) {

 int a = input.nextInt();

 if (_____ > _____)

 max = a;

}

System.out.println("Maximum is "+ max);

🕮 15.1.7

For the given number put as string find out the number of occurences of each digits and

print it out.

Let's have e.g. number 1419104

We need to obtain the information about the number of the repeat of digits 0, 1, 2 ... 9. The

browsing can be done so that we browse the number and find out the count of zero

occurences and print them, then we find out the occurences of 1, etc.

More effective will be to remember the number of occurences of each digits and by

browsing only increasing the corresponding digit.

This solution takes us to the use of field where on the 0 position will be the information

about zero's occurences, on the 1. position about the one's occurences, etc. We use a

integral field with 10 elements (indexes 0-9).

Array Processing| FITPED

216

By steping over the read number we indentify the digit and increate the corresponding

position in the field. If we find the value 3, we increase the content of the field arr[3] by 1,

if we find the value 0, we increase the content of the field arr[0] by 1, etc.

// we declare the field of 10 elements that have the value set on 0

int[] arr = new int[10];

// auxiliary variable that is used to read the digit

int digit;

// we read the number we want to examine

String str = input.nextLine();

// we browse its digits

for(int i = 0; i < str.length(); i++) {

 // we get the actual digit and convert it to number...

 digit = Integer.parseInt(str.substring(i, i+1));

 // ...so we can increase the value at the specific index by 1

 arr[digit]++;

}

for(int i = 0; i < 10; i++) // and at the end we output the digit and

number of occurences

 System.out.println(i + "-"+arr[i]);

📝 15.1.8

Fill in the code that finds out how many singledigit, double-digit till 20-digit numbers is in

the input.

The reading is ended by the number 0.

Write out only the non-zero values.

Scanner input = new Scanner(System.in);

int[] arr = new int[_____];

do {

 a = input.nextLine();

 count = a._____();

 arr[count]++

} while (!a._____("0"));

for(int i = _____; i < 21; i++)

 if (arr[i] != _____)

 System.out.println(i + " - " + arr[i]);

 1

 0

 compare

 21

Array Processing| FITPED

217

 20

 equals

 0

 1

 length

 length()

 size()

🕮 15.1.9

Very often we need to order the saved data during the solving of tasks.

The criteria for ordering can be following

 numerical (0,1,2,10,11,20...)

 text (0,1,10,11,111,2,20...)

The ordering is mostly named as sorting. The sorting algorthms does not have to be created

as new because there are lot of proven and functional algorithms that differ in code

complexity or requirements on memory or computer performance.

Sorting can be:

 ascending - from the smallest to the largest

 descending - from the largest to the smallest

📝 15.1.10

Which of the following sequences are ordered?

 1, 11, 110, 112, 2, 21

 abc, bab, bad, element

 100, 80, 33, 12, 7

 1, 2, 121, 14, 20, 205, 30

 lur, rul, url, rlu, lru

 list, disp, au, ag, al

Array Processing| FITPED

218

🕮 15.1.11

The most simple sort is bubble-sort (sorting based on comparison).

The algorithm is based on the comparison of neighbouring elements. By ascending sort are

compared the neighbouring elements and if the following element is smaller than the

previous, then they are exchanged.

By the first iteration through the field will the maximum element get to its (last) position,

where others don't. By the second iteration we don't need to compare all of the pairs so the

last comparison is for the penultimate pair - we save one comparison, etc.

By each iteration through the field is always correctly placed a next element at the end of

the field, after the second iteration is the correct one at the penultimate position,

etc. Gradually, all the elements "bubble" into the right place.

Array Processing| FITPED

219

Number of all iterations through elements will be n-1 because:

 by the first iteration is on its place the 1. element

 by second iteration the 2. element

 etc. till by the n-1 iteration n-1. element and that way the last one

By each iteration through the field will be added at the end one correctly ordered element

and by each other iteration its enough to go till the already ordered element.

The code is following:

for(int i = 0; i < arr.length-1; i++) { // number of iterations

 for(int j = 0; j < arr.length-i-1; j++) { // moving till last,

penultimate, etc., (n-i) element

 if (arr[j]>arr[j+1]) { // exchange of elements

 pom = arr[j];

 arr[j] = arr[j+1];

 arr[j+1] = pom;

 }

 }

 }

📝 15.1.12

Fill in the code for bubble sort:

Array Processing| FITPED

220

n = arr.length;

for(int i = 0; i < n - {1:SA:=_____; i++) {

 for(int j = 0; j < n-i-1; j++) {

 if (arr[j] > arr[_____]) {

 pom = arr[_____];

 arr[_____] = arr[_____];

 arr[_____] = pom;

 }

 }

 }

15.2 Arrays operations (programs)

⌨ 15.2.1 Division of the array into even and odd elements

Write the code that divides the integer array from the input into two arrays: the first array

will have even and the second array will have odd values. On the output, print "even:" in the

new line and "odd:" in the next line. Print the numbers in the same order as they were in

the original array. The number of array elements (space) individual array elements

separated by spaces, are given at the input.

Input : 7 4 -8 0 12 -21 7 2

Output:

even: 4 -8 0 12 2

odd : -21 7

⌨ 15.2.2 An array of even values

Write the code that will create a new array from an integer array with 10 elements given at

the input, containing only the even elements from the original. The even elements,

separated by a space, are printed to the console.

Input :

1

2

1

1

1

1

1

1

1

Array Processing| FITPED

221

1

Output: 2

Input :

1

2

1

1

4

1

1

1

1

6

Output: 2 4 6

⌨ 15.2.3 List positions for the specified value

Write the code that prints the positions of the searched value of the given integer array from

the input. The number of array elements (space), each array element separated by spaces,

(space), the searched value, are given at the input. At the output print individual positions

in separate lines.

Input : 5 4 -8 0 4 -21 4

Output:

0

3

⌨ 15.2.4 Replace an element in an array

Write the code that for the specified array of five strings, changes that element from the

array to the specified string, and prints the modified array.

The string field, the index of the element to change, and the string to replace, are given at

the input. The input values are always on a new line. Print the modified field on the console,

also cut it off.

Input :

shopping

swiming

running

Array Processing| FITPED

222

learning

cooking

3

working

Output:

shopping

swiming

working

learning

cooking

Input :

1

2

3

4

5

3

10

Output:

1

2

10

4

5

⌨ 15.2.5 Remove array element

Write a code that will remove the array element based on the given element index and

create a new array without this element.

The input and output values are on separate rows.

Input :

1

2

3

4

5

3

Output:

1

2

4

Array Processing| FITPED

223

5

Input :

shopping

swimming

running

learning

cooking

3

Output:

shopping

swimming

learning

cooking

⌨ 15.2.6 Mirror

Write the code that reads 5 given integer values into the array and then mirror them into

the second field and prints them. Enter numbers separated by a space at the input. At the

output, it prints to the console a mirrored order of numbers, the numbers are separated by

a space again.

Input : 1 2 3 4 5

Output: 5 4 3 2 1

Input : 9 5 1 4 7

Output: 7 4 1 5 9

⌨ 15.2.7 Sequence

Write the code that calculates the value of all other elements using the first and second

element of the array. Declare the array to work with larger values. The first number is given

in the first line and the second number in the second line. The value of the next element is

calculated using their sum. The other array values are calculated using the sum of the two

previous elements. Print a series of 20 elements separated by a space on the console.

Input :

1

Array Processing| FITPED

224

2

Output: 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

10946

Input :

2

3

Output: 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946

17711

⌨ 15.2.8 List of names

Write the code that will print all the names from a given array that begin with a given letter

from the input. At the input, the number of elements of the array is given, the individual

elements of the field and the initial letter are all values placed into separate rows in the

inpu. On the output, print out the elements - names that begin with the given letter,

separated by a space.

Input : 4

john

george

james

charles

j

Output: john james

Input: 7

charles

gabriel

adam

george

peter

andrew

leonard

b

Output:

Array Processing| FITPED

225

⌨ 15.2.9 The second largest number

Write the code that detects its second largest element for an integer array (with 10

elements) given at the input. The given values are separated by spaces.

Input : 1 2 3 4 5 6 7 8 9 10

Output: 9

Input : 10 20 30 40 50 60 70 80 90 100

Output: 90

⌨ 15.2.10 HowManyChars

Write the code that counts the occurrences of the character in the given string. At the input,

is given a character string consisting of uppercase and lowercase letters and numbers (no

spaces). Output each string character and the number of occurrences (separated by a colon)

in the order corresponding to the character codes. If the string contains an invalid character,

type "Error".

Input : Java

Output: J:1 a:2 v:1

Input : The string for character counting

Output: Error

⌨ 15.2.11 Mean

Write the code that will compute the arithmetic and geometric mean values of the given

series of positive integers. Don´t use an array of integers. The input contains the series of

numbers ended by number 999999 (not a part of the series). Print the mean values

separated by the space and rounded to the integers.

Input : 1 1 1 1 1 999999

Output: 1 1

Array Processing| FITPED

226

Input : 1 3 5 7 9 11 13 15 999999

Output: 8 6

15.3 Fields under scrutiny (programs)

⌨ 15.3.1 Frequency of numbers

Write the code that prints the number of occurrences of each unique value from the array

for the given integer array. At the input, is given the number of array elements (space), each

array element separated by spaces.

Print to the console, in the order in which they follow in the array, each value and the

number of occurrences. The values are in separate rows marked with a serial number. For

example:

Input : 6 4 -8 0 4 0 7

Output:

1. 4: 2

2. -8: 1

3. 0: 2

4. 7: 1

⌨ 15.3.2 Occurrence of digits

Write the code that detects the number of occurrences of each digit for the number you

enter. An integer value is given at the input. Print on the console, each digit and the number

of its occurrences in the form of digit - number. Individual values are in separate rows.

Input : 1233

Output:

0-0

1-1

2-1

3-2

4-0

5-0

6-0

7-0

8-0

9-0

Array Processing| FITPED

227

Input : 100999233

Output:

0-2

1-1

2-1

3-2

4-0

5-0

6-0

7-0

8-0

9-3

⌨ 15.3.3 Insert control and minimum

Write the code that finds a minimum of 5 integers in the input array. For correct field values,

the minimum value is printed to the console, otherwise the text "List contains incorrect

value, we do not consider it" and minimum of correct values.

Input :

1

2

3

4

5

Output: 1

Input :2

1

a

0

4

5

Output: List contains incorrect value, we do not consider it

0

⌨ 15.3.4 The occurrences of letters

Write the code that finds the number of occurrences of individual characters (a - z) for the

given text and prints them in the form of character - count. Output individual values in

alphabetical order and in separate lines. Skip zero occurrences.

Array Processing| FITPED

228

Input : hello

Output:

e - 1

h - 1

l - 2

o - 1

Input : agriculture

Output:

a - 1

c - 1

e - 1

g - 1

i - 1

l - 1

r - 2

t - 1

u - 2

⌨ 15.3.5 Average Word Length

Write the code that calculates the average length of words placed in an array, prints the

shortest and longest words. At the input, are given the elements of the array - a list of words

separated by a space. The shortest word (space), the longest word (space), the average

length (rounded to 2 decimal numbers) are printed to the console.

Input : Write a program that will compute the average length of words

Output: a program 4.64

Input : x x

Output: x x 1.00

Input : 1 12 123 1234 12345 123456

Output: 1 123456 3.50

Array Processing| FITPED

229

⌨ 15.3.6 Remove prime numbers from the array

Write the code that removes prime numbers from the integer array of positive numbers

read from the input. At the input, is given the number of array elements (space), each array

element separated by spaces. Output prints a new array without prime numbers.

Input : 7 4 8 2 12 21 7 47

Output: 4 8 12 21

15.4 Array sort (programs)

⌨ 15.4.1 Sort the array (numbers)

Write the code that sorts the values from the smallest to the largest in the given integer

array. At the input, is given the number of array elements (space), each array element

separated by spaces. Sort and print array elements. Display an ordered array on the console,

separated by commas, followed by a dot after the last element.

Input : 6 -33 63 -29 2 32 6

Output: -33,-29,2,6,32,63.

⌨ 15.4.2 Division and sort

Write the code that divides the given integer array into two separate arrays, one for the

positive and the other for the negative numbers. Array with positive elements is sorted in

ascending order, array with negative elements in descending. At the input, is given the

number of array elements (space), each array element separated by spaces. On the console,

print positive numbers in one line and negative numbers in the other line, separated by

spaces.

Input : 6 -33 63 -29 2 32 6

Output:

2 6 32 63

-29 -33

Array Processing| FITPED

230

⌨ 15.4.3 Sort the array (text)

Write the code that retrieves a list of words from the input and sorts them alphabetically.

At the input, is given the number of words in the array, and each word in separate line. Print

the ordered words, again in separate lines.

Input : 4

mom

dad

bro

sis

Output:

bro

dad

mom

sis

⌨ 15.4.4 Descending string order

Write the code that sorts the array of strings in descending order (z-a, Z-A). At the input, are

given strings separated by a space. Output the ordered strings.

Input : Write a program that will sort an array

Output: will that sort program array an a Write

Input : Bangkok London Paris Dubai Singapore New York Kuala Lumpur Tokyo

Output: York Tokyo Singapore Paris New Lumpur London Kuala Dubai Bangkok

Input : 1 2 3 11 123 1567

Output: 3 2 1567 123 11 1

⌨ 15.4.5 Is the array sorted?

Write the code that prints for the given integer array whether its elements are sorted from

smallest to largest. At the input, is given the number of elements (space), each array element

separated by spaces. If the array is sorted correctly, "Yes" is displayed on the console,

otherwise "No".

Array Processing| FITPED

231

Input : 6 -33 63 -29 2 32 6

Output: No

Input : 5 1 2 38 74 115

Output: Yes

⌨ 15.4.6 Sort the array by length and alphabet

Write the code to sort the given array of strings so that the ordered array will contain groups

of strings of the same length sorted in ascending order, the strings of each group will be

sorted alphabetically A-Z. At the input, given strings are separated by a space. Output should

be ordered by array elements.

Input : Write a program that will sort an array

Output: a an sort that will Write array program

Input : Bangkok London Paris Dubai Singapore New York Kuala Lumpur Tokyo

Output: New York Dubai Kuala Paris Tokyo London Lumpur Bangkok Singapore

Input : 1 2 3 11 123 1567

Output: 1 2 3 11 123 1567

2D Arrays

 Chapter 16

2D Arrays| FITPED

233

16.1 Matrix

🕮 16.1.1

Write a code that will read the list of student names and their height. The

number of students is given on input. Find the heighest student and print

his/her name and height.

To save the data we will use two arrays where on the same position will be data (name,

height) of the same student. So the student on the second position is called Ivan and his

height is in the second array also on position 2 - 133 cm.

When we browse through the array we will not save the value of the height but its position

(index) in the array. Based on the position we can then find its name.The data reading will

be done following:

...

Scanner input = new Scanner(System.in);

String data = input.nextLine(); // we read the count of students

final int count = Integer.parseInt(data); // convert the input into number

constant

// we define arrays with the length of the students count

String names[] = new String[count];

int heights[] = new int[count];

// loop to read the data

for(int i = 0; i < count; i++) {

 names[i] = vstup.nextLine();

 heights[i] = Integer.parseInt(input.nextLine()); // read and convert at

the same time

}

We continue with finding the highest value - we will save the array postition:

// lets assume that the first one is the biggest

int index = 0;

// browsing loop

for(int i = 1; i < count; i++) {

2D Arrays| FITPED

234

 // if the height on the browsed position is higher than the actual saved,

then the index becomes the new maximum index

 if (heights[i] > heights[index]) index = i;

}

// output is trivial

System.out.println("The most height is: " + names[index]+": " +

heights[index]);

📝 16.1.2

Fill in the code that will find the pupils with the given name in the list and will list the age

and position in which it is in the array for each of them.

String arr[] = {"Michael", "Ivana", "Leo", "Juan", "Anna", "Quassimodo",

"Helena", "Marty"}; // list of pupils

int age[] = {154, 124, 181, 125, 138, 142, 114, 125}; // list of ages

String name = input.nextLine(); // loading the search name

for(int i = _____; i < arr._____; i++) {

 if (arr[i]_____(name))

 System.out.println("position: " + _____ + ", age: " + _____)

}

 1

 i+1

 i

 age(i)

 0

 .equal

 age[i]

 size

 length

 .equals

🕮 16.1.3

Using more arrays to save data about objects is not useful and is hard to code.

In practice is for this used a matrix (two-dimensional array) that represents the repository

for table data without heading:

2D Arrays| FITPED

235

The matrix represents a data table of the same type

 integer table

 string table

We can declare it and reserve the memory space for its elements the same way as for an

array:

int[][] matrixOfNumbers = new int[10][10];

String[][] matrix = new String[20][30];

The first parameter is often taken as number of rows and the second as the number of

columns (but its up to the programmer how he/she deals with the values).

The fact that we declare a two-dimensional array is determined by two pairs of brackets.

📝 16.1.4

Complete the matrix declaration for integers with 5 rows and 8 columns

int_____ numbers = new int[_____][_____];

🕮 16.1.5

Matrix has its rows and its columns. Its count is set during the memory reservation:

int[][] data = new int[6][6];

Intersection of row and column is called cell and is the variable equavalent - in the case of

matrix declared for integer values its a int type variable. We access it using the row and

column value following way:

data[row][column]

2D Arrays| FITPED

236

E.g.

System.out.println(data[1][3]);

will print the content of the cell in another row (has index 1 because the numbering starts

from 0) and in the fourth column (index 3).

📝 16.1.6

Complete the code to list the contents of the selected cell.

System.out.println(data[_____][_____])

🕮 16.1.7

The change of the cell value will be done using a simple assignment of the value to the cell

data[1][2] = 76

The check or comparisson of the cell value is similar as for other variables, e.g.:

for integer numbers:

2D Arrays| FITPED

237

if (data[2][7] == 9)...

for strings:

if (data[2][7].equals("John"))...

The integer matrix has after declaration set all cells to the value 0.

📝 16.1.8

Ensure the content in the tagged cells is set up as shown:

data[_____][_____] = 0;

data[_____][_____] = 1;

data[_____][_____] = 2;

data[_____][_____] = 3;

🕮 16.1.9

The matrix content can be filled already by declaration. The values are listed by rows, where

the number of rows nor collumns is not declared and the space is reserved based on the

count of put values:

int[][] data = {

 { 0, 6, 3, 1},

 { 37, 32, 15, 18},

 { 2, 11, 30, 3}

 };

or

String[][] data = {

 {"Ivan", "Jan", "Sara", "Barbora"},

 {"181", "178", "164", "177"}

 };

In the case of string matrix we put the integer values as String.

2D Arrays| FITPED

238

When listing the values it is possible to have different count of elements in rows, e.g.:

String[][] data2 = {{"John", "Ferdinand", "Michael"},

 {"Fizgerald", "Habsburg"},

 {"31", "27", "40", "38", "11", "7"},

 };

With its reading and interpretation is needed to be dealt in code.

📝 16.1.10

Fill a code that fills an integer matrix with two rows and four columns in declaration:

_____[][] data = _____ _____0, 6, 3, 1_____,

 _____37, 32, 15, 18_____ _____;

🕮 16.1.11

If we want to print the content of the matrix, we need to access each cell, i.e. we need to

browse all columns in all rows.

The count of rows of matrix declared as

matrix[m][n]

can be get using its length:

int rows = matrix.length

In this case we use the property length without brackets - the same way as for an array.

Because the matrix definition in Java allows to use different count of elements in each row,

the information about the count of row elements can be get the following way:

int columns = matrix[i].length

where i represents the i-th row of matrix.

The output of all elements of a matrix can be done following way:

for(int i = 0; i < matrix.length; i++) {

2D Arrays| FITPED

239

 for(int j = 0; j < matrix[i].length; j++) {

 System.out.print(matrix[i][j]+"; "); // element output

 }

 System.out.println(); // new line

}

📝 16.1.12

Fill in the code to output the content of the matrix:

for(int i = 0; i < matrix._____; ci++) {

 for(int j = 0; j < matrix[_____]._____; j++) {

 System.out.print(matrix[_____][_____]+"; ");

 }

 System.out.println();

}

16.2 Working with matrix

🕮 16.2.1

So far we have worked with the matrix that was entered in the program. If we want to get

data from the user, we have to retrieve the values one at a time or read them by line and

then divide them into elements.

Read a matrix of m rows and n columns that containes only the values 0 or 1.

Write a code that will evaluete the matrix and print out if it containes more ones

or zeros.

We can choose from two approaches:

 find out the number of rows and columns of the matrix and repeat the reading of the

value m x n times

 find out the number of rows and columns of the matrix, read the matrix by rows and

each row divide to columns

The number of rows and columns is given by user and then we can create the space in

memory to save the elements:

2D Arrays| FITPED

240

Scanner input = new Scanner(System.in);

final int m = input.nextInt(); // constants can be used to ensure that the

dimensions of the matrix do not change

final int n = input.nextInt();

 int[][] matrix = new int[m][n];

 for(int i = 0; i < m; i++)

 for(int j = 0; j < n; j++) {

 matrix[i][j] = input.nextInt();

 }

}

In the loop we read the values from input that are divided by a space, e.g. for the matrix of

3 x 4 it can be the following way

1 0 0 1

0 0 1 1

1 1 1 1

📝 16.2.2

Fill the code so that constants are used to retain the dimensions of the matrix:

Scanner input = new Scanner(System.in);

_____ int m = input.nextInt();

_____ int n = input.nextInt();

 int[][] matrix = new int[_____][n];

 for(int i = 0; i < m; i++)

 for(int j = 0; j < _____; j++) {

 matrix[_____][_____] = input._____();

 }

}

🕮 16.2.3

The second option is to read the whole rows and then dividing them into columns, where:

 the input will be the same way as in the previous example

 we will read the whole row at a time

 we will use the command split that can divide the content of the strin into an array

1 0 0 1

0 0 1 1

1 1 1 1

2D Arrays| FITPED

241

The split command is used the following way:

String array[] = text.split(" ");

Let's have input, e.g.:

100 20 50 Anna Casablanca

The split parameter (in this case space) will server as a delimiter of the elements. The

number of the elements in the field is not known and will be known after the division of the

string based on the space occurence. The number of elements is one greater than the

number of separator occurrences in the text. In this case 5 (space is there 4 times)

The result of the division is a string array - we have to assume that the array does not contain

only numbers.

array = {"100", "20", "50", "Anna", "Casablanca"};

Except of space we can use as a delimiter any character or string. The values are often

delimited by following characters: ",", ";", "|" etc.

📝 16.2.4

How many elements will the array get from the following listing?

String myText ="Anna;Dana;Lama";

String array[] = myText.split(";");

📝 16.2.5

How many elements will the array get from the following listing?

String myText ="Anna;Dana;Lama";

String array[] = myText.split(" ");

🕮 16.2.6

2D Arrays| FITPED

242

Let's return to our task:

Read the matrix of m rows and n columns that contains only values 0 or 1.

and lets read each row using the string:

 Scanner input = new Scanner(System.in);

 int m = Integer.parseInt(input.nextLine()); // when reading the rows its

appropriate to read all inputs the same way

 int n = Integer.parseInt(input.nextLine());

 String[][] matrix = new String[m][n];

 String arr[];

 String row;

 for(int i=0; i < m; i++) {

 row = input.nextLine(); // reads the whole row

 arr = row.split(" "); // divides the row content based on the space

 matrix[i] = arr; // puts the elements of field into the reserved space

in matrix

}

The result will be "array of arrays" in the following way:

During the input can happen that the user will input less or more elements than is reserved

for the matrix. In this case we should inform the user about this.

If we input less elements then the row of the matrix will not contain enough elements. If we

input more elements than is possible, then we will input only the maximum allowed.

📝 16.2.7

Fill the code to list whether the matrix contains more 0 or 1 values.

Scanner input = new Scanner(System.in);

int m = input.nextInt();

int n = input.nextInt();

count_0 = 0;

2D Arrays| FITPED

243

count_1 = 0;

int[][] matrix = new int[m][n];

for(int i = 0; i < m; i++) {

 for(int j = 0; j < n; j++) {

 matrix[_____][_____] = input._____();

 }

}

for(int i = 0; i < matrix._____; i++) {

 for(int j = 0; j < matrix[_____]._____; j++) {

 if (matrix_____ == 0) _____++;

 if (matrix_____ == 1)_____++;

 }

}

if (count_0 _____ count_1) System.out.println("equal count");

if (count_0 _____ count_1) System.out.println("more 0 values");

if (count_0 _____ count_1) System.out.println("more 1 values");

🕮 16.2.8

Java can print out the list of elements of array or matrix also using a special loop that does

not contain the number of elements. We can just say: go through all elements of array.

This loop is in some languages called also as foreach - for each element.

int[] array = new int[20];

// variable value will contain the content of each element of the array in

sequence

for(int value : array)

 System.out.print(value+" ");

The loop will do the transition through each element of the array without the control

variable.

At each step of the cycle, the array element is inserted into a value variable, which is used

to list the contents.

📝 16.2.9

Fill the code so that the sum of all elements in the array is displayed:

...

// in array arr are the integer values

2D Arrays| FITPED

244

int sum = _____;

_____(int x _____ _____)

 sum = sum + _____;

System.out.println(_____);

🕮 16.2.10

Same as the array elements you can write using this loop also the elements of a matrix:

for(String[] row : matrix) { // the element of matrix is the whole array

 for(String cell : row) { // in the array we will browse its elements

 System.out.print(cell + " "); // the output value

 }

 System.out.println(); // new line

}

The first loop goes through the elements of matrix - matrix is an array of arrays, so the first

element is an array (the variable row is array).

The second loop goes through elements of the row (elements of an array), i.e. one element

of the array is String.

📝 16.2.11

What type of row variable is in the following program?

for(int[] row : matrix) {

 for(int cell : row) {

 System.out.print(cell + " ");

 }

 System.out.println();

}

 int[]

 array of integers

 array arrays

 matrix of integers

 String

 String[]

2D Arrays| FITPED

245

🕮 16.2.12

Matrix is often taken as a table.

E.g. table:

can be saved as a matrix with the following content:

String[][] table = {{"Jan", "1.3", "21"},

 {"Anna", "2.8", "18"},

 {"Helen", "3.1", "16"},

 {"Francesco", "2,5", "18"}};

We cannot name the columns and cannot use different data types for the columns but we

can work with the saved data.

📝 16.2.13

What does the following program list?

String[][] table = {{"Jan", "1.3", "21"},

 {"Anna", "2.8", "18"},

 {"Helen", "3.1", "16"},

 {"Francesco", "2,5", "18"}};

System.out.println(matrix[1][2]);

🕮 16.2.14

Find in the table of names, averages and age all 18 years old students. Print out all the

information about them.

2D Arrays| FITPED

246

String[][] table = {{"Jan", "1.3", "21"},

 {"Anna", "2.8", "18"},

 {"Helen", "3.1", "16"},

 {"Francesco", "2,5", "18"}};

The used matrix will have 3 columns where the age will be in the third one (index 2).

Transition through matrix will be done using a loop. The searched data will be text (table is

a string matrix) so we will compare the text ("18") or we will convert it to a number and then

compare it with 18.

In the case of similarity we will print all data from the row.

for(int i = 0; i < table.length;i++) { // we read the data by rows

 if (Integer.parseInt(table[i][2]) == 18)

 System.out.println(table[i][0] +

 ", average:" + table[i][1]+

 ", age: " + table[i][2]+".");

}

📝 16.2.15

Fill the code to find out the number of registered students under 18.

String_____ data = {{"Jan", "1.3", "21"},

 {"Anna", "2.8", "18"},

 {"Helen", "3.1", "16"},

 {"Francesco", "2.5", "18"}}

int x = 0;

for(int i = 0; i < _____; i++)

 if (Integer._____(table[i][_____]) < 18) x++;

System.out.println(_____);

2D Arrays| FITPED

247

16.3 Matrix (programs)

⌨ 16.3.1 Even and odd values

Write the code to find out how many even and odd numbers are included for the given

integer matrix (2x4 size). At the input, are given values, each in a separate line. On the

output, print the text "even" (space) number, if there are more even numbers in the matrix.

Otherwise, print "odd" (space) count on the console. If the number of even and odd numbers

is the same, print the text "equal".

Input :

1

2

3

4

5

6

7

8

Output: equal

Input :

2

2

2

3

3

2

3

2

Output: even 5

⌨ 16.3.2 Reset values below the main diagonal

Write the code that creates a matrix (3x3 size) from the integer values obtained at the input

and resets all elements below the main diagonal. The given 9 numbers are separated by a

space at the input. Print the modified matrix on the console. Allocate 4 spaces for each value

for the matrix.

Input : 44 -2 45 -29 35 14 0 50 -34

Output:

2D Arrays| FITPED

248

 44 -2 45

 0 35 14

 0 0 -34

⌨ 16.3.3 Square

Write the code that prints the numbers 1..n * n (max. n is 10) in a two-dimensional array of

n x n dimensions. Integer n is given at the input. Print the table as seen on the example:

Input : 5

Output:

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

⌨ 16.3.4 Sum of diagonals

Write the code that calculates two amounts for a quadratic matrix. At the input, is given the

size of the matrix (number of rows / columns) and the individual integer values separated

by a space. Output two values: the sum of the elements placed on the diagonal (top left -

bottom right) and the sum of the elements on the opposite diagonal (top right - bottom left).

Input : 2 1 2 2 1

Output: 2 4

Input : 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Output: 10 10

⌨ 16.3.5 Searching in matrix of integers

Write the code that will check if a given element can be found in the 2D matrix containing

integer values. Input contains first the size of matrix: the number of rows and the number

of columns, and then elements counting from left to right and from top to down.

2D Arrays| FITPED

249

The last input vaue is the element to search for. Print "found at x y", where x and y are row

number and column number respectively of the first occurrence of searched element (by

searching the matrix from left to right and from top to down) or "not found".

Input : 3 3 1 2 3 4 5 6 7 8 9 5

Output: found at 1 1

Input : 2 1 1 1 1

Output: found at 0 0

Input : 3 0 1 0 2 0 2 0 3 0 99

Output: not found

⌨ 16.3.6 Symetric matrix

Write the code that will check if a given square array is symmetric to the matrix diagonal.

Input contains the size of an array: the number of rows (and this will be also the number of

columns), and then elements, counting from left to right and from top to down. Print "true"

if the array is symmetric and "false" otherwise.

Input : 3 1 2 3 4 5 6 7 8 9

Output: false

Input : 4 1 5 6 7 5 1 8 9 6 8 1 10 7 9 10 1

Output: true

⌨ 16.3.7 Mirrored matrix

Write the code that prints a mirror image flipped along a vertical axis for a matrix of size n x

n containing 0 and 1. At the input, is given n, each array element separated by a space. Print

a mirror image of the matrix on the console.

Input : 4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Output:

1 1 0 0

1 1 0 0

2D Arrays| FITPED

250

1 1 0 0

1 1 0 0

⌨ 16.3.8 Looking for relations

Write the code that inserts numbers in the two-dimensional array of integers of size m x n

(maximum 11x11) as shown below (identify dependencies). The values m and n are given at

the input. Print the matrix on the console as shown.

Input :

8

4

Output:

 0 0 0 0 0

 0 1 2 4 7

 0 2 4 8 14

 0 3 6 12 21

 0 4 8 16 28

 0 5 10 20 35

 0 6 12 24 42

 0 7 14 28 49

⌨ 16.3.9 Sum row vs. elements

Write the code that will compute the number of elements of the 2D matrix (integer values)

which values are equal to the sum of the row number and the column number of cell in

which this element is placed.

Input contains first the size of matrix: the number of rows and the number of columns, and

then elements counting from left to right and from top to down. Print the number of

elements fulfilling the above condition.

Input : 3 3 1 2 2 4 5 6 7 8 4

Output: 2

Input : 2 1 1 0 1

Output: 0

2D Arrays| FITPED

251

⌨ 16.3.10 Sorted matrix with integers

Write a program that will check if a given 2D matrix of integer numbers is sorted in ascending

order. Check the array by rows (up-to-down) and left-to-right by columns.

Input contains first the size of matrix: the number of rows and the number of columns, and

then elements counting from left to right and from top to down. Print "sorted" or

"unsorted".

input : 3 3 1 2 3 4 5 6 7 8 9

output: unsorted

input : 2 3 1 2 3 4 5 6

output: sorted

⌨ 16.3.11 Sorted matrix with strings

Write the code that will check if a given 2D matrix of strings of characters is sorted in

descending order. Check the array by rows (up-to-down) and left-to-right by columns.

Input contains first the size of matrix: the number of rows and the number of columns, and

then elements counting from left to right and from top to down. Print "sorted" or

"unsorted".

Input : 2 4 Write a program that will search an array

Output: unsorted

Input : 1 10 j i h g f e d c b a

Output: sorted

16.4 Table (programs)

⌨ 16.4.1 Search in matrix of strings

Write a program that will check if a given element can be found the 2D matrix containing

the strings of characters. Input contains first the size of matrix: the number of rows and the

2D Arrays| FITPED

252

number of columns, and then elements counting from left to right and from top to down. In

the end input the string to search for. Print "found at x y", where x and y are row number

and column number respectively of the first occurrence of searched element (by searching

the matrix from left to right and from top to down), or "not found".

Input : 2 4 Write a program that will search an array array

Output: found at 1 3

Input : 1 10 Bangkok London Paris Dubai Singapore New York Kuala Lumpur

Tokyo Warsaw

Output: not found

⌨ 16.4.2 Search in table

Write the code that adds 3 records to the data matrix and find out if the given entry is in the

matrix. The input contains the name, surname, and year of birth, each in a separate line. The

last input value represents the search string. In the case of a match, all the data belonging

to the search string will be printed to the console. If the search string is not in the matrix, it

prints "No match".

Input :

Adam

Mally

1996

Matthew

Great

1987

Joseph

Carrot

1998

Adam

Output Adam Mally 1996

Input :

Adam

Mally

1996

Matthew

Great

1987

2D Arrays| FITPED

253

Joseph

Carrot

1998

John

Output:

No match

⌨ 16.4.3 Delete a line

Write the code that adds 3 records to the data matrix to see if the given entry is in the matrix.

Input contains the name, surname, and year of birth, each in a separate line. The last input

value represents the row number (not its index!) that we want to delete. A new matrix is

printed to the console without the row name (space) surname (space) year removed.

Input :

Adam

Mally

1996

Matthew

Great

1987

Joseph

Carrot

1998

2

Output:

Adam Mally 1996

Joseph Carrot 1998

⌨ 16.4.4 Character search

Write a program that will compute the number of occurrences of the given character within

the 2D matrix containing the strings of characters. Input contains first the size of matrix: the

number of rows and the number of columns, and then elements counting from left to right

and from top to down. The last input contains the character to count to. Print the number

of occurrences of the character. Ignore case differences.

Input : 2 5 Write a program that will compute the number of occurrences R

Output: 6

2D Arrays| FITPED

254

Input : 1 10 Bangkok London Paris Dubai Singapore New York Kuala Lumpur

Tokyo x

Output: 0

⌨ 16.4.5 Character sort

Write a program that will compute the numbers of occurrence characters in given string.

Input contains the string of characters.

Print each character of the string and number of its occurrences (separated by a space) in

the descending order of these numbers of occurrence.

input : Java

output: a:2 J:1 v:1

input : The string for character counting

output: :4 r:4 n:3 c:3 t:3 h:2 i:2 a:2 o:2 e:2 g:2 f:1 s:1 T:1 u:1

Files

 Chapter 17

Files| FITPED

256

17.1 Streams

🕮 17.1.1

We communicated with the programm as a user already from the first lesson of

programming:

Scanner made possible the input of the data through channel System.in:

Scanner input = new Scanner(System.in);

the console made it possible to output the text results through channel System.out:

System.out.print("Hello World!");

 To transfer data (reading or writing) is dealt with a communication channel that has to be

created or accessed. This channel is called as stream.

The channels can be divided into:

 input - input of data into the program

 output - output of data from the program

Because of that is the work with stream always the same no matter what kind of stream it

is, we can use the same procedures and commands to access:

 file,

 user input/output,

 memory,

 IP network etc.

📝 17.1.2

What do we refer to as a communication channel for data transmission?

Files| FITPED

257

🕮 17.1.3

The life cycle of stream is pretty simple:

creation and opening

 before we start working with a stream, we need to identify it by creating or opening

it

 the stream is often open already by creation but if it was not opened it is neccessary

to do this separately (to reserve the needed system resources)

own work with stream

 you do the needed operations (writing, reading)

closing the stream

 if we finish the work with stream, we have to close it

 so that the data from cache are written,

 so that the exclusive opened stream is accessible for other objects/processes/users.

📝 17.1.4

Order each step of the life cycle of a stream:

 creation and opening

 own work with a stream

 closing a stream

🕮 17.1.5

Working with streams means potential source of errors. The most common errors can be:

 an attempt to read an empty stream

 an attempt to access a nonexisten stream

Files| FITPED

258

 an attempt to write to a closed stream

Because Java is a safe language, and places in the code where errors can be handled, it is

difficult to work with files at first glance.

Ultimately, however, it is sufficient to remember that all streaming operations need to be

wrapped in a try-catch pair, and in any case ensure that the stream is closed when work is

terminated:

try {

 // open or create stream

 // work with stream

} catch (IOException e) {

 System.out.println("Error");

} finally {

 // close stream

}

📝 17.1.6

Order each program activity into a logical order:

 } catch (IOException e) {

 // working with the stream

 } finally {

 try {

 // opening or creating of the stream

 }

 // treatment / listing the errors

 // closing the stream

🕮 17.1.7

In the program, we need to first determine the type of stream based on what we want to

do. There are two groups of streams:

 input - read data from stream,

 output - write data into stream.

Files| FITPED

259

When using stream we have to define the source or aim (e.g. keyboard, file, network, etc.).

Based on this information we can choose a suitable stream type (class) that is dedicated for

our purposes.

A comprehensive class hierarchy for working with streams is contained in

the java.io library.

📝 17.1.8

What groups do we divide streams into?

 input

 output

 input-output

 floating

 valid

 fluent

🕮 17.1.9

Each type of stream accesses data processing in different ways, and there is always a

separate type for reading and writing data:

 binary (work with bytes) - include FileInputStream, FileOutputStream,

 character (translates bytes into characters: 1 character = 1 or 2 bytes)

– FileReader, FileWriter,

 text (work at the same time with the whole row)

– BufferedReader, BufferedWriter.

In the most cases streams that work with text files and read whole rows are enough.

Files| FITPED

260

📝 17.1.10

What types of streams are designed to work with rows in a text file?

 BufferedReader

 BufferedWriter

 FileInputStream

 FileOutputStream

 FileReader

 FileWriter

17.2 Text File

🕮 17.2.1

The first form for storing data were binary files in which data was written so that they could

be processed as quickly as possible. Whole fields or even more complex data structures were

written. The characters typed were encoded numbers or text as they were stored in the

computer's memory.

The disadvantage was that the reading had to always be in the same data structure and if

the file was damaged or a character was accidentally overwritten, the file was unusable.

With increasing computing power and the spread of IT to all industries, text files (more

precisely text files that are user-friendly) have become the most widespread storage

standard.

Files| FITPED

261

Data in text files are stored in a “human-readable” form, often structured by special tags

(XML, HTML, etc.). Overwriting or deleting a random character usually has very little impact

and the damage can be easily repaired.

Working with text files is usually not programmed by character, but by row.

📝 17.2.2

Which statements are true?

 Data in text files are stored in human readable form.

 Deleting a character in a binary often destroys all of its contents.

 Data in binary files is stored in human readable form.

 Deleting a character in a text file often destroys its entire contents.

🕮 17.2.3

Work with files is done using a so called buffer classes that can write more characters at

the same time or read the whole row. They containg a buffer (cache memory) that can allow

you to work with more characters.

Reading/writing is dealt by FileReader /FileWriter that allow the data to be saved on a

specified place e.g. harddisk and manipulate with them as with characters (not bytes).

File creation is done using FileWriter that creates and makes accessible a file and offers

tools to read characters.

Files| FITPED

262

FileWriter fW = new FileWriter("file.txt");

The following connection is offered to BufferedWriter that will extend the

existing FileWriter to offer writing a whole sequence of characters.

BufferedWriter bW = new BufferedWriter(fW);

The whole notation can be done also in one step:

BufferedWriter bW = new BufferedWriter(new FileWriter("file.txt"));

BufferedWriter is created that will use the just created FileWriter with the reference to a

file with name file.txt as a parameter.

📝 17.2.4

Which statements are true?

 FileWriter ensures character-by-character access to file data.

 FileWriter ensures a link to a file based on the file name.

 BufferedWriter ensures the entire sequence of characters is written in one step.

 BufferedWriter need FileWriter for activities.

 FileWriter ensures that the entire character sequence is written in one step.

 FileWriter ensures file byte access to file data.

 FileWriter ensures access to entire lines in a file at once.

🕮 17.2.5

Use the command to write the string to the file

String txt = "Any text to write";

bW.write(txt);

for row feed

bW.newLine();

The stream needs to be closed after the operations are completed in order to store cached

data and release file access. We use the following command:

Files| FITPED

263

bW.close();

Closing BufferedReader also closes its FileReader.

📝 17.2.6

Fill in the commands

bW._____(data); // write data

bW._____(); // create a new row

 print

 writeln

 write

 newLine

 addLine

 println

🕮 17.2.7

Write to a file name.txt your name and surname into separate rows.

Working with files is a potential source of errors so we need to catch possible exceptions.

The first issue can be wrong given filename, so we start with the try - catch block already

before file opening:

String name = "Jozef";

String surname = "Bryndza";

try {

 FileWriter fw = new FileWriter("name.txt"); // create FileWriter to

make the file available

 BufferedWriter bW = new BufferedWriter(fw); // create a buffered class

over it

 bW.write(name); // write name to the file

 bW.newLine(); // line feed

 bW.write(surname); // write surname to the

file

 bW.close(); // close working with the

file

} catch (IOException e) {

 System.out.println(e.getMessage());

Files| FITPED

264

}

In this case we did not use the recommended schema try-catch-finally because of

simplifying the code.

📝 17.2.8

Fill the code that writes to the user.txt file the names of the three users stored in

variables u1-u3 into separate rows.

String u1 = "One";

String u2 = "Two";

String u3 = "Three";

_____ {

 FileWriter fw = new FileWriter("_____");

 _____ bW = new _____(fw);

 bW._____(u1);

 bW._____(); // new row

 bW._____(u2);

 bW._____(); // new row

 bW._____(u3);

 bW._____(); // close file

} catch (IOException e) {

 System.out.println(e.getMessage());

}

 open

 write

 BufferedWriter

 writeln

 BufferedWriter

 writeln

 OutputFileWriter

 newLine

 OutputFileWriter

 finish

 write

 try

 write

 newLine

 close

Files| FITPED

265

 user.txt

 write

 attempt

🕮 17.2.9

To load data using a class FileReader a BufferedReader.

In the first step we need to create access to the file FileReader.

FileReader fR = new FileReader("file.txt");

In the second step, ensure the ability to read data row by row using BufferedReader.

BufferedReader bR = new BufferedReader(fR);

The row reading itself is done by:

String s = bR.readLine();

📝 17.2.10

Assign to each activity an appropriate command or class:

 class to make the file available for reading: _____

 class to make the file available for writing: _____

 writing a sequence of characters using bW in variable data: _____

 reading the whole row using bR: _____

 writing a new row using bW: _____

 closing of the file represented by bW: _____

 bW.close()

 bR.readLine()

 bW.newLine()

 FileReader

 FileWriter

 bW.write(data)

Files| FITPED

266

🕮 17.2.11

Read from file user.txt created in the previous task names of three users and print them

out.

Using the try-catch-finally combination we can secure that the file gets closed even there

will be an error during the data reading.

If we want to close the file, we cannot declare the variable inside the try-catch but before

it. Of course the access to the file should be done inside the block:

FileReader fR; // declare variables

BufferedReader bR;

try {

 fR = new FileReader("user.txt"); // create FileReader to access the

file

 bR = new BufferedReader (fR); // create it above the buffered class

 String u1 = bR.readLine(); // read 1. row

 String u2 = bR.readLine(); // read 2. row

 String u3 = bR.readLine(); // read 3. row

 System.out.println(u1 + ", " + u2 + ", " + u3);

} catch (IOException e) {

 System.out.println(e.getMessage()); // if there is an error, it will be

displayed

} finally {

 bR.close(); // regardless of whether an error

occurred or not, the file closes

}

📝 17.2.12

Sort the correct code commands to retrieve two lines from the data.txt file.

 System.out.println(e.getMessage());

 }

 } catch (IOException e) {

 System.out.println(q + ", " + a);

 bR.close();

 BufferedReader bR;

 bR = new BufferedReader (new FileReader("data.txt"));

 String a = bR.readLine();

Files| FITPED

267

 try {

 } finally {

 String q = bR.readLine();

🕮 17.2.13

If you do not specify a path to identify the file (in its name), it is stored and searched in the

application folder.

If you want to specify its absolute location in the filesystem, you must use a double slash

when defining the path:

 one occurence says that it is a special character,

 two that we code „\“.

The path will be defined e.g.:

String myFile = "C:\\folder\\data.txt";

📝 17.2.14

Which name or file paths are true?

 data

 data.txt

 C:\\folder\\data.txt

 E:\\folder\\data

 C:\folder\data.txt

 D:\folder\\data.txt

 D:\\folder\data.txt

Files| FITPED

268

17.3 Working with files

🕮 17.3.1

Write a program that generates the specified number from random integers <-

500,500> and saves them in a text file.

The task is quite simple - generate a random number and write it to a file in text form:

int number, count = 10;

String txt;

BufferedWriter bW;

try {

 bW = new BufferedWriter (new FileWriter("data.txt"));

 for(int i = 0; i < count; i++) {

 number = (int) (-500 + Math.random()*1001); // generate

random number

 txt = ""+number; // convert it to

a String

 bW.write(txt); // write text to

the file

 }

} catch (IOException e) { System.out.println(e.getMessage());

} finally { bW.close(); } // close file

In this form we can generate a content for file that does not clearly identify where the

number begins and ends.

10-200-13548674-4505-5403872114-4540-76544-5421270854

Although we could separate the numbers with a comma or semicolon, the standard is to

write them in a new row. So add a new line with the command and the result will be a file

containing random numbers placed one below the other.

int number, count = 10;

String txt;

BufferedWriter bW;

try {

 bW = new BufferedWriter (new FileWriter("data.txt"));

 for(int i = 0; i < count; i++) {

 number = (int) (-500 + Math.random()*1001); // generate

random number

 txt = ""+number; // convert it to

a String

 bW.write(txt); // write text to

the file

Files| FITPED

269

 bW.newLine(); // new row

 }

} catch (IOException e) { System.out.println(e.getMessage());

} finally { bW.close(); } // close file

📝 17.3.2

Fill a code that generates 20 random numbers of the range <-20, 50> and writes them into

the rows to the data.txt file.

int number, count = _____;

String txt;

BufferedWriter bW;

try {

 bW = new BufferedWriter(new _____("data.txt"));

 for(int i = 0; i < count; i++) {

 number = (int) (_____ + Math._____()*_____);

 txt = ""+number;

 bW._____(txt);

 _____._____();

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 bW._____();

}

🕮 17.3.3

Write a code that can read the given text file by rows and print them out.

Regardless of whether we are reading data from a numbered file or another file, we cannot

rely on knowing the number of lines in a file in advance.

It is therefore necessary to check during the reading whether we have reached the end of

the file, which is expressed by reading the value null.

We will load the data into a string variable row, if it contains text, we will write it out and

repeat the reading. If it contains a null value, we will not do the listing and stop loading.

Given that we must definitely retrieve data from the file at least once, the optimum

structure will finally be a loop with a condition at the end.

Files| FITPED

270

String row;

BufferedReader bR;

try {

 bR= new BufferedReader (new FileReader("data.txt")); // prepare access to

the file

 do { // repeat the

following steps

 row = bR.readLine(); // read the row

 // if it was not the end of the file (null), we

write it

 if (row != null) System.out.println(row);

 } while (row != null); // repeat as long as

the content of the row variable is other than null

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 bR.close();

}

📝 17.3.4

Fill a code to determine the number of rows in the file.

String row;

int count = 0;

BufferedReader bR;

try {

 bR = new BufferedReader (new FileReader("data.txt"));

 _____ {

 row = bR._____();

 if (row != _____) count++;

 } while (row != _____);

} catch (_____ e) {

 System.out.println(e.getMessage());

} _____ {

 bR.close();

}

System.out.println(count);

🕮 17.3.5

In practice, reading through a loop with a condition at the beginning is more often used,

where we read the contents of a row in one step and also verify that it is non-null.

String row;

Files| FITPED

271

BufferedReader bR;

try {

 bR = new BufferedReader (new FileReader("data.txt"));

 // read the line directly in the

condition

 // and compare the read value

with null

 while ((row = bR.readLine()) != null) {

 System.out.println(row); // if it was not null, write it

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 bR.close();

}

In the loop condition, the contents of the next line in the file are read into the row variable,

and if the null value is not read, the loop body continues. If the read value is null, the cycle

ends (or does not run).

📝 17.3.6

Fill a code to find out how many common characters the file contains.

String row;

int count = 0

BufferedReader bR;

try {

 bR = new _____(new _____("data.txt"));

 while ((row _____ bR.readLine()) _____ null)

 count = count + row_____;

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 _____.close();

}

System.out.println(count);

🕮 17.3.7

Write a code that will return the count of digits in the file data.txt.

Files| FITPED

272

Perhaps the easiest thing to do is to read the row from the file, browse through it by

character, and count the numbers.

Loading is provided by a cycle with a condition at the beginning, comparison of characters

will be done through for example the method charAt.

String row;

int count = 0;

BufferedReader bR;

try {

 bR = new BufferedReader (new FileReader("data.txt"));

 while ((row = bR.readLine()) != null) { // load until the end of the file

is read

 for(int i = 0; i < row.length(); i++) { // we will browse through the

characters

 // of the loaded row

 // if the character is in the

range 0-9

 // it is a number

 if (row.charAt(i) >= '0' && row.charAt(i) <= '9') count++

 }

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 bR.close();

}

System.out.println(count); // write count of number

📝 17.3.8

Fill a code that finds the number of occurrences a user-entered word is in the data.txt file.

String row;

int count = 0;

_____ bR;

Scanner input = new Scanner(System.in);

String data = input._____();

 try {

 bR = new _____(new FileReader("data.txt"));

 while ((row _____ bR._____()) != null) {

 while (row._____(data) > -1) {

 count++;

 row = row.substring(row._____(data) + 1);

 }

 }

Files| FITPED

273

} catch (_____ e) {

 System.out.println(e.getMessage());

} finally {

 bR.close();

}

System.out.println(count);

🕮 17.3.9

The file input.txt contains numerical values (each row contains only one

number). Create a new file output.txt that will contain absolute values of even

numbers from the first file.

E.g. for:

-5

4

-8

9

2

-22

will be the result:

4

8

22

In this program we will work with two files - one will read the data, the other will write data.

String row;

int number;

BufferedReader bR;

BufferedReader bW;

try {

 bR = new BufferedReader (new FileReader("input.txt")); // prepare for

reading

 bW = new BufferedWriter (new FileWriter("output.txt")); // prepare for

writing

 while ((row = bR.readLine()) != null) { // loading until

the end of the file is loaded

 number = Integer.parseInt(row); // convert the

contents of the line

 // to a number

Files| FITPED

274

 if (number % 2 == 0) { // see if it's

even

 row = “” + Math.abs(number); // we use the row

variable to store

 // the absolute

value

 bW.write(row); // write it

 bW.newLine(); // line feed

 }

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 bR.close();

 bW.close();

}

📝 17.3.10

Fill a code that will create a new file output.txt that will contain digit sums of odd numbers

from the file input.txt that contains numerical values (each row contains one number).

String row;

int number;

BufferedReader bR;

BufferedReader bW;

 try {

 bR = new _____(new FileReader("input.txt"));

 bW = new BufferedWriter(new _____("output.txt"));

 while ((row = bR._____) != _____) {

 number = Integer.parseInt(row);

 if (number _____ 2 == _____) {

 int sum = 0;

 for(int i = 0; i < row.length(); i++) {

 sum = sum + Integer.parseInt(row.substring(_____, _____));

 bW._____(_____ + sum);

 bW._____();

 }

 }

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 bR.close();

 bW.close();

}

Files| FITPED

275

17.4 Files processing (programs)

⌨ 17.4.1 Read from file

Write the code that reads numeric data from the specified text file into a 10-element array.

At the input, read the name of the file from which to read from. Output the array elements.

Input : numbers.txt

Output:

1

2

3

4

5

6

7

8

9

10

Preview of file numbers.txt:

1

2

3

4

5

6

7

8

9

10

⌨ 17.4.2 First and last pupil

Write the code that reads the names of the pupils from the specified text file and prints the

names of the first and last pupil of the list. Load the text file at the input.

Input : list.txt

Output:

Peter R.

Mira M.

Files| FITPED

276

Input : list2.txt

Output:

Miro V.

Brona A.

Preview of text file list.txt:

Peter R.

Miro V.

George L.

Beata G.

Andrea I.

Tom T.

Alena A.

Brona A.

Mira M.

⌨ 17.4.3 Names on B

Write the code that reads the names of the pupils from the specified text file and prints the

names beginning with the letter B. Read the text file at the input.

Input : zoznam.txt

Output:

Beata G.

Brona A.

Input : zoznam2.txt

Output:

Bibiana A.

Bohus A.

Preview of text file zoznam.txt:

Peter R.

Miro V.

Juro L.

Files| FITPED

277

Beata G.

Andrea I.

Tester T.

Alena A.

Brona A.

Mira M.

⌨ 17.4.4 The best students

Write the code that lists students with an average grade of less than 1.5. At the input, read

two text files that contain the students' names and their average grade. The average is

separated by a semicolon in the file, in some numbers a dot is used as a decimal separator,

in some a comma and some is written as an integer. Print the names of all honored students

on the console (average <= 1.5). Print only names, not averages.

Input :

3A.txt

3B.txt

Output:

Peter R.

Miro V.

Andrea I.

Mira M.

Lolo L.

Miso K.

Input :

3A2.txt

3B2.txt

Output:

Miro V.

Andrea I.

Preview of text file 3A.txt:

Peter R.;1.2

Miro V.;1.3

Juro L.;3,3

Andrea I.;1,2

Tester T.;3.0

Alena A.;2.2

Files| FITPED

278

Mira M.;1,5

Preview text file 3B.txt:

Lolo L.;1.2

Miso K.;1,3

Juro J.;3.3

⌨ 17.4.5 Number of characters, lines, sentences and words

Write the code that detects how many characters, rows, sentences and words are contained

in the specified text file. The name of the text file is given at the input. Suppose words do

not divide at the end of a line, and no sentence ends with three dots. Print the following

information to the console: "characters: 67 rows: 2 sentences: 9 words: 14".

Input : book.txt

Output: characters: 70 rows: 3 sentences: 5 words: 16

Input : book2.txt

Output: characters: 34 rows: 2 sentences: 2 words: 7

Preview of text file book.txt:

Ahoj ako sa mas? Mam sa dobre. A ty?

Tento test je test.

Testuje sa sam!

⌨ 17.4.6 Maximum absence

Write the code that will find out in the given text file the name of the student with the most

absence. At the input, is entered the file name that contains the student name in each line

and a colon-separated number of absence hours. Read the data into an array that has 30

elements in size for up to 30 pupils. Print only the name of the student with the most

absence on the console.

Input : data1.txt

Output: Anna

Files| FITPED

279

Input : data3.txt

Output: Lavonda

Preview of text file data1.txt:

Anna:55

Galen:10

Gustavo:20

Bethann:25

Rochel:0

Larhonda:15

⌨ 17.4.7 Calculation of absence

Write the code that finds the average number of absence in the specified text file. At the

input, is given the file name that contains the student name in each row and a colon-

separated number of absence hours. Print the number of registered pupils, the total and

average number of absence on the console. Round the number to one decimal place.

Input : data1.txt

Output:

10

122

12.2

Preview of text file data1.txt:

Anna:12

Jano:10

Peter:20

Adam:30

Mato:5

Jozo:15

Fero:16

Miro:4

Jana:7

Dana:3

Files| FITPED

280

⌨ 17.4.8 First and last alphabetically

Write the code that searches in the specified file and prints the names of the first and last

pupils in alphabetical order. At the input, is given the name of the file containing the list of

students (one name is given in each row). Use array of max. size 10. Print the name of the

first and last pupil in alphabetical order on the console.

Input :

list1.txt

Output:

Adam

Zuzana

Preview of text file list1.txt:

Jano

Peter

Anna

Adam

Mato

Jozo

Zuzana

Miro

Jana

Dana

⌨ 17.4.9 The longest name

Type the code that looks for the longest name in the specified file. At the input, is given the

name of the file containing the list of students (one name is given in each row). Use array of

max. size 10. Print the longest name found on the console.

Input : list1.txt

Output: Kvetoslava

Preview of text file list1.txt:

Jano

Peter

Anna

Files| FITPED

281

Adam

Mato

Kvetoslava

Zuzana

Miro

Jana

Dana

⌨ 17.4.10 Mirror

Write the code that loads numbers from the given file and mirrors them. At the input, is

given the name of the file that contains the data in the form of numbers, and saves it in a

number arrray of 10 elements. Print numbers from last to first on the console.

Input : myData1.txt

Output:

10

9

8

7

6

5

4

3

2

1

Preview of text file myData1.txt:

1

2

3

4

5

6

7

8

9

10

Exercises

 Chapter 18

Exercises| FITPED

283

18.1 Advanced exercises (programs)

⌨ 18.1.1 Ones

Write a code that will compute a sum of numbers encoded in "one-s" (one-digit) system (a

system where there is only one digit: 1). The input contains two numbers in "one-s" system.

Print the sum of these values both in "one-s" system and decimal system.

LIMITATION: The final sum cannot be greater than 19 digits.If the number is entered

differently from the "one-s" system, print -1.

Input : 1 11

Output: 111 3

Input : 12 11

Output: -1

Input : 11 111

Output: 11111 5

Input : 1 0

Output: -1

⌨ 18.1.2 RPN2Infix

Write the code converting an arithmetic expression given in the Reversed Polish (postfix)

Notation to infix notation. Use only binary operations "+, -, * , / ", 1-digit positive integer

values and 1-letter (lower case) variables.

Input a string of characters containing the expression. Print the expression in infix notation

or word "error" if the expression is incorrect (to many operators or arguments, wrong

operator or wrong order of elements).

Input : 12+53-*

Output: ((1+2)*(5-3))

Exercises| FITPED

284

Input : 1a3+-*

Output: error

Input : ab/

Output: (a/b)

Input : ab-cde-*+

Output: ((a-b)+(c*(d-e)))

⌨ 18.1.3 RPN2PN

Write a code converting an arithmetic expression given in the Reversed Polish (postfix)

Notation to Polish (prefix) Notation. Use only binary operations "+, -, * , / ", 1-digit positive

integer values and 1-letter (lower case) variables. Input a string of characters containing

the expression. Print the expression in prefix notation or word "error" if the expression is

incorrect (to many operators or arguments, wrong operator or wrong order of elements).

Input : 12+53-*

Output: *+12-53

Input : 1a3+-*

Output: error

Input : ab/

Output: /ab

Input : ab-cde-*+

Output: +-ab*c-de

https://courses.fitped.eu/mod/quiz/view.php?id=3305

Exercises| FITPED

285

⌨ 18.1.4 FloatToBits

Write the code that will convert a number of type float to its binary representation (sign-

exponent-mantissa). Include conversion of: +0.0, -0.0, +Infinity, -Infinity and NaN. Input the

float number. Print the 32-bit binary string with bits of sign, exponent and mantissa

separated by the "-" character.

Input : 1.5

Output: 0-01111111-10000000000000000000000

Input : NaN

Output: 0-11111111-10000000000000000000000

Input : 0.0

Output: 0-00000000-00000000000000000000000

⌨ 18.1.5 FactorialInf

Write the code that will compute the factorial which is the smaller factorial less then a given

number. Input a non-negative integer number (of any size). Print both the -n- and factorial

of -n- which meets the requirements.

Input : 1000000000000000000000000000000

Output: 29 8841761993739701954543616000000

Input : 0

Output: 1 1

Input : 1

Output: 2 2

Exercises| FITPED

286

⌨ 18.1.6 Fibonacci

Write the code that will compute the n-th Fibonacci number according to the iterative

algorithm. Input the integer number n, greater-or-equal 0 and less-or-equal 90. Print the nth

Fibonacci number.

Input : 1

Output: 1

Input : 0

Output: 0

Input : 10

Output: 55

Input : 100

Output: 3736710778780434371

⌨ 18.1.7 Cesars cipher

Write the code that will convert a given string of characters according to the Caesar cipher.

Input first the key and then the string of characters. Print the converted string. The string

should contain letters (in the following order: lowercase and uppercase) and space

character, without leading or trailing spaces. The key should be an integer number from the

[-100, 100]. If the string contains a character outside acceptable set or the key has an

incorrect value then print the word "error".

Input : 1 Java

Output: Kbwb

Input : 200 text to encode

Output: error

Exercises| FITPED

287

⌨ 18.1.8 Coding

Write the code that encodes the text by shifting each letter of the alphabet by 3 positions.

Input : Hello

Output: Khoor

Input : john

Output: mrkq

⌨ 18.1.9 Trimming

Write the code that corrects multiple spaces in a string by replacing them only once.

Input : John has cold at home.

Output: John has cold at home.

⌨ 18.1.10 Numeric input verification

Write the code to see if the string is a number. An integer or decimal number is given at the

input. If it is a number the text "It is a number" is written to the console otherwise it is "It is

not a number".

Input : ahoj

Output: It is not a number

Input : 12.547

Output: It is a number

⌨ 18.1.11 Conversion

Write the code which will convert an integer number from radix 10 to the given radix from

range <2, 36>. Input contains the positive number of type long and the radix. Print the value

of given number converted to the given radix.

Input : 9223372036854775807 2

Exercises| FITPED

288

Output: 111

Input : 65536 16

Output: 10000

Input : 1000 32

Output: V8

⌨ 18.1.12 SumOfPowers

Write the code that will compute the greatest exponent k for the sum n+n^2+n^3+...+n^k

for given n. Power k should be computed for all integer types. Input contains integer number

from range <2, 127>. Print the values of power k for type byte, short, integer and long

respectively.

Input : 2

Output: 6 14 30 62

Input : 127

Output: 1 2 4 9

⌨ 18.1.13 FibonacciInf

Write the code that will compute the nth Fibonacci number (n may be of any non negative

value of type int) according to the iterative algorithm. Input contains the integer number n,

greater or equal 0. Print the nth Fibonacci number..

Input : 200

Output: 280571172992510140037611932413038677189525

Input : 0

Output: 0

Exercises| FITPED

289

Input : 1

Output: 1

⌨ 18.1.14 BracketsStr

Write the code that will check if a given string of characters (mimicking the arithmetic

expression) contains a correct bracket arrangement: {[(..)]}. The string may contain any kind

of characters but only a bracket arrangement should be checked. Input contains a string of

characters. Print "correct" if a bracket arrangement is O.K. and "incorrect" otherwise.

Input : z[a(bc)d]/e

Output: correct

Input : [a(*(b+c)-d]/e)

Output: incorrect

Input : (lkl{jnjn})

Output: incorrect

Input : {nn[nn(jj) (mm)mm]mm}

Output: correct

⌨ 18.1.15 RealNumber

Write the code converting string of bits (representing the value of 32-bit float type in its

internal form according to the IEEE 754 Standard for Floating-Point). Include +0.0, -0.0,

+INFINITY, -INFINITY and NaN values. The input contains the string of 32 bits. Print the

converted float value.

Input : 01000010110010000000000000000000

Output: 100.0

Input : 00000000000000000000000000000000

Output: +0.0

Exercises| FITPED

290

JavaApp.java

public class JavaApp {

 static int bin2int(String str){

 // Conversion between str and int

 }

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 18.1.16 Hash

Write the code that will compute a hash for the given string. The hash is computed as the

sum of the ASCII code of the following character multiplied by its position number in the

string (counting from 0 from right to left). Finally, the computed hash should be brought to

range <0, n). Input contains the integer number n, greater than 1 and the string of

characters. Print the hash of the string.

Input : 10 ABC

Output: 4

Input : 5 Java

Output: 0

⌨ 18.1.17 Shift

Write a code that will read the integer number which bits of given range will set to a given

value. Bits are numbered from the left side starting from 0. Input contains the integer

number, then two values describing the range of bits: from and to, and finally the new value

(integer number) of bits to set. Print the result in the binary form of length 32 binary digits.

Input : 1 5 7 0

Output: 11111000111111111111111111111111

Exercises| FITPED

291

Input : 0 1 2 3

Output: 01100000000000000000000000000000

⌨ 18.1.18 PN2Infix

Write the code converting an arithmetic expression given in the Polish (prefix) Notation to

infix notation. Use only binary operations "+, -, * , / ", 1-digit positive integer values and 1-

letter (lower case) variables. Input contains a string of characters containing the

expression. Print the expression in infix notation or word "error" if the expression is

incorrect (to many operators or arguments, wrong operator or wrong order of elements).

Input : *+12-53

Output: ((1+2)*(5-3))

Input : *-+1a3

Output: error

Input : /ab

Output: (a/b)

Input : +-ab*c-de

Output: ((a-b)+(c*(d-e)))

⌨ 18.1.19 Prefix notation

Write a code evaluating an arithmetic expression given in the Polish (prefix) Notation. Use

only binary operations " +, - , * " and 1-digit positive integer values. Input contains a string

of characters containing the expression. Print the expression-s value or text "error" if the

expression is incorrect (to many operators or arguments, wrong operator or wrong order of

elements).

Input : *+12-53

Output: 6

https://courses.fitped.eu/mod/quiz/view.php?id=3305

Exercises| FITPED

292

Input : *-+123

Output: ERROR

Input : /ab

Output: ERROR

Input : +-28*3-25

Output: -15

⌨ 18.1.20 Reverse Polish Notation

Write a code evaluating an arithmetic expression given in the Reversed Polish (postfix)

Notation. Use only binary operations " + , - , * " and 1-digit positive integer values. Input

contains a string of characters containing the expression. Print the expression-s value or

word "error" if the expression is incorrect (to many operators or arguments, wrong operator

or wrong order of elements).

Input : 12+53-*

Output: 6

Input : 123+-*

Output: error

Input : 12/

Output: error

Input : +28-3*25-+

Output: -15

18.2 List of tasks

⌨ 18.2.1 Triangle type

Exercises| FITPED

293

Write the code that for three pairs of numbers of type double will check what kind of a

triangle they form (isosceles, right-angled). Input three pairs of numbers of type double (x1,

y1, x2, y2, x3, y3). Print two boolean values (false or true) that correspond to each kind of

triangle. If the points described by the pairs of numbers do not define a triangle then print

"error".

Input : 1 10 3 10 2 13

Output: true false

Input : 10 3 16 3 10 6

Output: false true

⌨ 18.2.2 Occurs at the beginning or end

Write the code to see if the given string is in another given string at the beginning or end.

If it is at the end "Match at end" is displayed on the console, if it is at the beginning, print

"Match at the beginning". If the string is in the second string but not at the end or at the

beginning, it prints "Match is not at the beginning or at the end". If the string is not found at

all, it prints "No match".

Input :

mama ma maslo

ma

Output: Match at the beginning

Input :

mama ma maslo

maslo

Output: Match at end

Input :

mama ma maslo

nema

Output: No match

Exercises| FITPED

294

Input :

otec kosi travu

kosi

Output: Match is not at the beginning or at the end

⌨ 18.2.3 Palindrome?

Write the code to see if the given string is palindrome. If it is, the console displays "It is

palindrome" otherwise it says "It is not palindrome".

Input : kayak

Output: It is palindrome

Input : ahoj

Output: It is not palindrome

⌨ 18.2.4 Spelling correction

Write the code that change all "i" in the input string for "y".

Input : Mi home

Output: My home

Input : Miro

Output: Myro

⌨ 18.2.5 Swap part of a string

Write the code that finds and replaces one substring with another in the given string. At the

input is given the string in which the swap is performed, the original substring to replace is

given in the new line and a new substring is given in the last line. The output prints the

changed string to the console.

Input :

jano

ja

la

Exercises| FITPED

295

Output: lano

⌨ 18.2.6 NonRepDigits

Write the code that will compute a number of 3-digit numbers with unique (non-repeated)

digits encoded in system of given radix. The input contains the radix. Print the number of

combinations with unique digits.

Input : 10

Output: 648

Input : 8

Output: 294

Input : 2

Output: 0

Input : 16

Output: 3150

⌨ 18.2.7 Months

Write the code that will translate names of the months into their numbers. The method

should be case-insensitive. The input contains a name of the month. Print its number and

if the input string is not the name of the month then print 0.

Input : January

Output: 1

Input : january

Output: 1

https://courses.fitped.eu/mod/quiz/view.php?id=3305

Exercises| FITPED

296

Input : JANUARY

Output: 1

Input : month

Output: 0

⌨ 18.2.8 NoOfDays

Write the code that calculates the number of days in that month for the month and year

numbers you enter. At the input, are given 2 integers, the first number between 1 - 12

(month number), a space, the second number from 1900-2200 (year). Print the number of

days of the month on your console. 31 days for 1st, 3rd, 5th, 7th, 8th, 10th, 12th month; 30

days for 4th, 6th, 9th, 11th month and 28/29 (leap year) days for 2nd month. If the numbers

are out of range, print the error "-1".

Input : 2 1900

Output: 28

Input : 1 2000

Output: 31

Input : 2 2000

Output: 29

Input : 1 2201

Output: -1

⌨ 18.2.9 Error resistant subtraction

Write the code that subtracts two numbers from each other and is resistant to entering

incorrect values. There are given two integers at the input. The result of the subtraction is

displayed on the console. In case of incorrect input print down if the first number "Error

number 1" or the second "Error number 2" is wrong.

Exercises| FITPED

297

Input : 1

2

Output: -1

Input: j

5

Output: Error number 1

Input : cislo

cislo

Output: Error number 1

Input : 5

cislo

Output: Error number 2

⌨ 18.2.10 SortArray

Write the code to sort the array of integers in ascending order. At the input, is given the

number of array elements (space), each array element separated by a space. Print ordered

array elements separated by a space on the console.

Input : 5 2 5 33 7 1

Output: 1 2 5 7 33

Input : 7 77 66 55 44 33 22 11

Output: 11 22 33 44 55 66 77

⌨ 18.2.11 ReversArray

Write the code that prints the integer array given at the input in reverse order. At the input,

is given the number of array elements (space), each array element separated by a space.

Print the array elements in reverse order separated by a space on the console.

Input : 5 2 5 33 7 1

| FITPED

298

Output: 1 7 33 5 2

Input : 7 77 66 55 44 33 22 11

Output: 11 22 33 44 55 66 77

